CBSE Class 10th Maths

Ch- 8 Introduction to Trigonometry

Trigonometry:

Trigonometry is the science of relationships between the sides and angles of a right-angled triangle.

Trigonometric Ratios:

Ratios of sides of right triangle are called trigonometric ratios.
Consider triangle ABC right-angled at B. These ratios are always defined with respect to acute angle ‘A’ or angle ‘C.

case I case II
(i) sine A = frac { perpendicular }{ hypotenuse } =frac { BC }{ AC } (i) sine C = frac { perpendicular }{ hypotenuse } =frac { AB }{ AC }
(ii) cosine A = frac { base }{ hypotenuse } =frac { AB }{ AC } (ii) cosine C = frac { base }{ hypotenuse } =frac { BC }{ AC }
(iii) tangent A = frac { perpendicular }{ base } =frac { BC }{ AB } (iii) tangent C = frac { perpendicular }{ base } =frac { AB }{ BC }
(iv) cosecant A = frac { hypotenuse }{ perpendicular } =frac { AC }{ BC } (iv) cosecant C = frac { hypotenuse }{ perpendicular } =frac { AC }{ AB }
(v) secant A = frac { hypotenuse }{ base } =frac { AC }{ AB } (v) secant C = frac { hypotenuse }{ base } =frac { AC }{ BC }
(v) cotangent A = frac { base }{ perpendicular } =frac { AB }{ BC } (v) cotangent C = frac { base }{ perpendicular } =frac { BC }{ AB }

TRIGONOMETRIC IDENTITIES:

  • sin² θ + cos² θ = 1 ⇒ sin² θ = 1 – cos² θ ⇒ cos² θ = 1 – sin² θ
  • cosec² θ – cot² θ = 1 ⇒ cosec² θ = 1 + cot² θ ⇒ cot² θ = cosec² θ – 1
  • sec² θ – tan² θ = 1 ⇒ sec² θ = 1 + tan² θ ⇒ tan² θ = sec² θ – 1
  • sin θ cosec θ = 1 ⇒ cos θ sec θ = 1 ⇒ tan θ cot θ = 1

Standard values of Trigonometric ratios:

Complementary Trigonometric ratios:

  • si(90θcoθ
  • co(90θsiθ
  • ta(90θcoθ
  • co(90θtaθ
  • cose(90θseθ
  • se(90θcoseθ

 

NCERT Solutions Ch-8 Maths
Ch- 7 Coordinate Geometry (Prev Lesson)
(Next Lesson) Ch-9 Some Applications of Trigonometry
Back to CBSE Class 10th Maths
Send Message To Edu Spot