NCERT Solutions class 10 Maths Ch- 2 Polynomials

Ex 2.1

Question 1:
The graphs of y = p(x) are given below for some polynomials p(x). Find the number of zeroes of p(x) in each case.

Solution:

 

Ex 2.2

Question 1.
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and their coefficients:

(i) x2 – 2x – 8

x2 – 4x +2x – 8

x (x-4) 2 (x-4)

(x-4)(x+2)

x-4 = 0

x = 4

x+2 = 0

x = -2

So zeroes are 4 and -2

Verifications:

x2 – 4x +2x – 8

sum of zeroes = -b/a

4+(-2) = -(-2)/1

4-2 = 2/1

2 =2 verify

product of zeroes = c/a

4 x -2 = -8/1

-8 = -8 verify

(ii) 4s2 – 4s + 1

4s2 – 2s - 2s + 1

2s(2s-1) -1 (2s-1)

(2s-1)(2s-1)

2s-1 = 0

2s = 1

s = 1/2

so, zeroes are 1/2 , 1/2

Verifications:

4s2 – 4s + 1

sum of zeroes = -b/a

1/2 + 1/2 = -(-4)/4

2/2 = 4/4

1 =1 verify

product of zeroes = c/a

1/2 x 1/2 = 1/4

1/4 =  1/4 verify

(iii) 6x2 – 3 – 7x

first we write in order

6x2 - 7x - 3
6x2 - 9x + 2x -3

3x(2x - 3) +1(2x -3)

(2x - 3)(3x + 1)

2x - 3 = 0

2x = 3

x = 3/2

3x + 1 = 0

3x = -1

x = -1/3

so, zeroes are 3/2 and -1/3

Verifications:

6x2 - 7x - 3

sum of zeroes = -b/a

3/2 +(- 1/3) = -(-7)/6

3/2 - 1/3 = 7/6

7/6  = 7/6 verify

product of zeroes = c/a

3/2 x -1/3 = -3/6

-3/6 = -3/6 verify

(iv) 4u2 + 8u

4u is common so,

4u ( u + 2)

4u = 0

u = 0

u + 2 = 0

u = -2

Verifications:

4u2 + 8u

sum of zeroes = -b/a

0 + ( -2) = - 8/4

-2 = -2  verify

product of zeroes = c/a

0 x -2 = 0/4

0 = 0  verify

(v) t2 – 15

    t2 – ()                  . :   X    =  15

From Identitity    A2 - B 2 =  ( A + B ) (A - B)

(t + ) (t)

S0, zeroes are      and  -

Verifications:

sum of zeroes = -b/a

-      = 0 = - 0/1

product of zeroes = c/a

     =   - 15 = -15/1 verify

(vi) 3x2 – x – 4

3x2 + 3x - 4 x – 4

3x ( x+1) -4 (x+1)

(3x - 4) ( x + 1)

(3x - 4) = 0

      x = 4/3

( x + 1)  = 0

    x = -1

S0, zeroes are 4/3 and -1

Verifications:

sum of zeroes = -b/a

4/3 + (-1) = -(-1)/3

4/3 - 1 = 1/3 = 1/3

product of zeroes = c/a

4/3 x -1 = -4/3 verify

Question 2.
Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively:

 

Ex 2.3

 

Question 1.
Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2
(ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x
(iii) p(x) = x4– 5x + 6, g(x) = 2 – x2
Solution:

 

Question 2.
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial.
(i) t2 – 3, 2t4 + 3t3 – 2t2– 9t – 12
(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
(iii) x2 + 3x + 1, x5 – 4x+ x2 + 3x + 1
Solution:

Question 3.
Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are

 Question 5.
Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and:
(i) deg p(x) = deg q(x)
(ii) deg q(x) = deg r(x)
(iii) deg r(x) = 0
Solution:

Send Message To Edu Spot