
Series GEFH1/C

SET~1

प्रश्न-पत्र कोड Q.P. Code 55/C/1

रोल नं.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Q.P. Code on the title page of the answer-book. *

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours

Maximum Marks: 70

नोट / **NOTE** :

कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 27 हैं। Please check that this question paper contains 27 printed pages.

(ii) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(iii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।

Please check that this question paper contains **35** questions.

(iv) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें ।

Please write down the serial number of the question in the answer-book before attempting it.

(v) इस प्रश्न-पत्र को पढने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र में **35** प्रश्न हैं । **सभी** प्रश्न **अनिवार्य** हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **क, ख, ग, घ** एवं **ङ**।
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय (MCQ) प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) **खण्ड ख** में प्रश्न संख्या **19** से **25** तक अति लघु-उत्तरीय (VSA) प्रकार के **दो-दो** अंकों के प्रश्न हैं ।
- (v) खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय (SA) प्रकार के तीन-तीन अंकों के प्रश्न हैं।
- (vi) खण्ड घ में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय (LA) प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं।
- (vii) खण्ड ङ में प्रश्न संख्या 34 तथा 35 केस-आधारित चार-चार अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 3 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग **वर्जित** है। भौतिक नियतांकों के निम्नलिखित मान, आवश्यकता अनुसार उपयोग करें:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \\ \hline \text{इलेक्ट्रॉन का द्रव्यमान } (m_e) &= 9.1 \times 10^{-31} \text{ kg} \\ \hline \text{न्यूट्रॉन का द्रव्यमान } &= 1.675 \times 10^{-27} \text{ kg} \\ \hline \text{प्रोटॉन का द्रव्यमान } &= 1.673 \times 10^{-27} \text{ kg} \\ \hline \text{आवोगाद्रो संख्या } &= 6.023 \times 10^{23} \text{ प्रति ग्राम मोल (per gram mole)} \\ \hline \text{बोल्ट्ज़मान नियतांक} &= 1.38 \times 10^{-23} \text{ JK}^{-1} \end{split}$$

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper contains **35** questions. **All** questions are **compulsory**.
- (ii) This question paper is divided into **five** Sections **A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A** Questions no. 1 to 18 are Multiple Choice (MCQ) type questions, carrying 1 mark each.
- (iv) In **Section B** Questions no. **19** to **25** are Very Short Answer (VSA) type questions, carrying **2** marks each.
- (v) In **Section C** Questions no. **26** to **30** are Short Answer (SA) type questions, carrying **3** marks each.
- (vi) In **Section D** Questions no. **31** to **33** are Long Answer (LA) type questions carrying **5** marks each.
- (vii) In **Section E** Questions no. **34** and **35** are case-based questions carrying **4** marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 3 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is **not** allowed.

Use the following values of physical constants, if required:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron $(m_e) = 9.1 \times 10^{-31} \text{ kg}$

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \, \text{JK}^{-1}$

खण्ड क

1.	स्थित है	•	बिन्दु से	/3) से भरे किसी पात्र की तलहटी पर देखने पर यह बिम्ब H का n प्रतिशत
	(a) (c)	15 25	(b) (d)	20 33
2.		$\mathbf{B_x} \stackrel{\hat{\mathbf{i}}}{\mathbf{i}} - \mathbf{B_y} \stackrel{\hat{\mathbf{j}}}{\mathbf{j}}$) से गुज़रता है । इस इत		हिं इलेक्ट्रॉन किसी चुम्बकीय क्षेत्र $ ightarrow$ नर बल $ ightarrow$ है : (यहाँ $ m e$ इस पर आवेश
	(a)	$- e (v_x B_y - v_y B_x) \hat{k}$	(b)	$e (v_x B_y - v_y B_x) \hat{k}$
	(c)	$- e (v_x B_y + v_y B_x) \hat{k}$	(d)	$e (v_x B_y + v_y B_x) \hat{k}$
3.	_	र्ष्ड चुम्बक को उसके चुम्बकीय अक्ष तेत रहने वाली भौतिक राशि है :	के समा	न्तर दो बराबर भागों में काटा गया है ।
	(a)	ध्रुव प्राबल्य	(b)	चुम्बकत्व का परिमाण
	(c)	जड़त्व आघूर्ण	(d)	चुम्बकीय आघूर्ण
4.	पर नेट ! (a) (b) (c)	ाणी LC परिपथ में, जो किसी ac स्रोत प्रतिघात : रैखिकत: बढ़ती है रैखिकत: घटती है पहले बढ़कर अधिकतम हो जाती है अ पहले घटकर शून्य हो जाती है और पि	भौर फिर	
5.		नाध्यम में गमन करते समय X-किर खित में से कौन-सी भौतिक राशि समान		ल प्रकाश और रेडियो तरंगों के लिए है ?
	(a)	तरंगदैर्ध्य	(b)	चाल
	(c)	आवृत्ति	(d)	संवेग
6.	बिन्दु पर	पथान्तर $rac{\lambda}{4}$ है, वहाँ तीव्रता होगी :	जहाँ पः	थान्तर λ है, वहाँ तीव्रता I_0 है । जिस I_0
	(a)	1 ₀ /4	(b)	$\frac{1}{2}$
	(c)	I_0	(d)	- शून्य

SECTION A

1.	A small object lies at the bottom of a vessel filled with water (refractive
	index 4/3) up to a height H. When viewed from a point above the surface
	of water, the object appears raised by n percent of H. The value of n is:

(a) 15

(b) 20

(c) 25

(d) 33

2. An electron with velocity $\overrightarrow{v} = (v_x \ i + v_y \ j)$ moves through a magnetic field $\overrightarrow{B} = (B_x \ i - B_y \ j)$. The force \overrightarrow{F} on the electron is : (e is the magnitude of its charge)

(a) $-e(v_x B_v - v_v B_x)\hat{k}$

(b) $e(v_x B_y - v_y B_x) \hat{k}$

(c) $-e(v_x B_y + v_y B_x)\hat{k}$

(d) $e(v_x B_v + v_v B_x) \hat{k}$

3. A bar magnet is cut into two equal halves parallel to its magnetic axis. The physical quantity that remains unchanged is:

(a) pole strength

(b) magnitude of magnetisation

(c) moment of inertia

(d) magnetic moment

4. In a series LC circuit connected to an ac source, with the increase in the frequency of the source, the net reactance :

(a) increases linearly

(b) decreases linearly

(c) first increases to become maximum and then decreases to zero

(d) first decreases to become zero and then increases

5. Which of the following physical quantities remain the same for X-ray, red light and radio waves when travelling through a medium?

(a) Wavelength

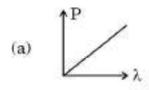
(b) Speed

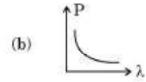
(c) Frequency

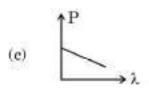
(d) Momentum

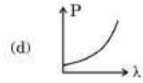
6. In Young's double-slit experiment, the intensity on the screen is I_0 at a point where path difference is λ . The intensity at the point where path difference is $\frac{\lambda}{4}$ is:

(a) $\frac{I_0}{4}$

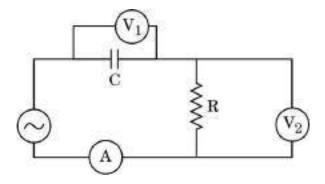

(b) $\frac{I_0}{2}$


(c) I_0


(d) zero



7. निम्नलिखित में से कौन-सी आकृति किसी कण के संवेग के साथ उससे संबद्ध दे ब्रॉग्ली तरंगदैर्ध्य के विचरण का निरूपण करती है ?

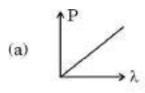


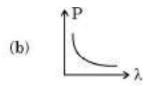
- 8. नाभिकीय अभिक्रिया $_7N^{14} + _2He^4 \longrightarrow X + _1H^1$ में, X किसका निरूपण करता है ?
 - (a) ${}_{7}O^{16}$

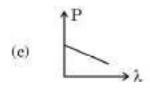
(b) 8^{17}

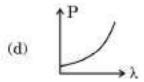
 $^{(c)} \quad {}_{8}\mathrm{O}^{17}$

- $(d) 7N^{16}$
- 9. दिए गए आरेख में संधारित्र C और प्रतिरोधक R को श्रेणी में किसी ac स्रोत से संयोजित दर्शाया गया है । V_1 और V_2 वोल्टमीटर और A ऐमीटर है ।

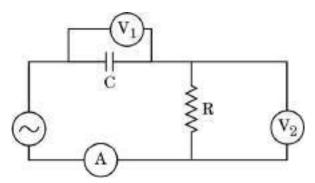



निम्नलिखित में से कौन-सा कथन सही है ?


- (a) परिपथ में धारा ${
 m V}_2$ में दर्शायी वोल्टता के साथ कला में पश्च है ।
- (b) V_1 में दर्शायी वोल्टता V_2 में दर्शायी वोल्टता के साथ कला में अग्र है ।
- (c) परिपथ में धारा और V_1 में दर्शायी वोल्टता सदैव ही समान कला में हैं ।
- (d) V_1 में दर्शायी वोल्टता V_2 में दर्शायी वोल्टता के साथ कला में पश्च है ।



7. Which of the following figures represents the variation of a particle's momentum with the de Broglie wavelength associated with it?



- In the nuclear reaction ${}_7N^{14} + {}_2He^4 \longrightarrow X + {}_1H^1$, X represents : 8.
 - $_{7}O^{16}$ (a)

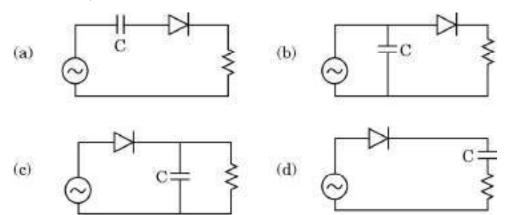
 $\begin{array}{cc} \text{(b)} & \ _{8} \text{N}^{17} \\ \text{(d)} & \ _{7} \text{N}^{16} \end{array}$

(c)

- 9. The given figure shows a capacitor C and a resistor R connected in series to an ac source. V_1 and V_2 are voltmeters and A is an ammeter.

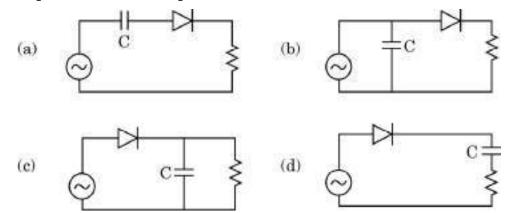
Which of the following statements is correct?

- Current in the circuit lags in phase with voltage shown in V_2 . (a)
- The voltage shown in V_1 is ahead in phase with voltage shown in V_2 . (b)
- The current in the circuit and the voltage shown in V_1 are always (c) in phase.
- (d) The voltage shown in V₁ lags behind in phase with the voltage shown in V_2 .


10.	•	•	ŭ	किसी प्रकाश-सुग्राही पदार्थ पर आपतन त रखते हुए उसकी तीव्रता में वृद्धि की
		गो प्रकाश विद्युत धारा में :	5	m van graam maan 1 glaa m
	•	वृद्धि होगी		
		कमी होगी		
		कोई परिवर्तन नहीं होगा		
	(d)	पहले कमी होगी और फिर शून्य हो ज	ाएगी	
11.	_	लक्ष्य नाभिक का उपगमन करते समय तम होता है जब प्रकीर्णन कोण (θ) हो	_	ऐल्फा कण के लिए संघट्ट प्राचल तब
	(a)	0°	(b)) 90°
	(c)	180°	(d)) 45°
12.	दो नाशि क्या है	_	. : 27 है	। इनके नाभिकीय घनत्वों का अनुपात
	(a)	1:27	(b)	1:1
	(c)	1:9	(d)	1:3
13.		ामतल तरंग वक्रता त्रिज्या R के कि त तरंग कोई गोलीय तरंग होती है जिसक	_	तल दर्पण पर आपतन कर रही है। 11 होती है:
	(a)	$\frac{\mathrm{R}}{4}$	(b)	$\frac{\mathrm{R}}{2}$
	(c)	R	(d)	2R
14.		कराया गया है । प्रेरित वि.वा. बल		सी चुम्बकीय क्षेत्र में क्षेत्र के लम्बवत की ध्रुवता एक बार परिवर्तित होती है
	(a)	1 परिक्रमण में	(b)	$\left(rac{1}{2} ight)$ परिक्रमण $$ में
	(c)	$\left(rac{1}{4} ight)$ परिक्रमण में	(d)	$\left(rac{3}{4} ight)$ परिक्रमण में
EE IO I	1	Dave	0 -1 07	

10.	thresl		ency of	a photosensitive material of the incident radiation is kept to current will:
	(a)	increase		
	(b)	decrease		
	(c)	not change		
	(d)	first decrease and then become	e zero	
11.	The in	mpact parameter for an alpha j	particle	e approaching a target nucleus
	is ma	ximum when the scattering ang	gle (θ) i	s:
	(a)	0°	(b)	90°
	(c)	180°	(d)	45°
12.		nuclei have their mass number of their nuclear densities?	rs in tl	ne ratio of 1 : 27. What is the
	(a)	1:27	(b)	1:1
	(c)	1:9	(d)	1:3
13.	A nla	ne wave is incident on a conc	ave mi	rror of radius of curvature R.
		eflected wave is a spherical way		
	(a)	$\frac{\mathrm{R}}{4}$	(b)	$\frac{\mathrm{R}}{2}$
	(c)	R	(d)	2R
14.	A pla	nar loop is rotated in a magne	tic fiel	d about an axis perpendicular
	to the	field. The polarity of induced e	mf cha	inges once in each :
	(a)	1 revolution	(b)	$\left(rac{1}{2} ight)$ revolution
	(c)	$\left(rac{1}{4} ight)$ revolution	(d)	$\left(\frac{3}{4}\right)$ revolution

15. निम्नलिखित में से किस आरेख में किसी अर्धतरंग दिष्टकारी द्वारा मसृण (चिकने) निर्गत प्रदान करने के लिए संधारित्र 'C' को सही ढंग से संयोजित किया गया है ?



प्रश्न संख्या 16 से 18 अभिकथन (A) और कारण (R) प्रकार के प्रश्न हैं। दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए।

- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है और कारण (R) भी ग़लत है।
- **16.** अभिकथन (A) : धातुओं के लिए प्रतिरोध ताप गुणांक धनात्मक और अर्धचालकों के लिए ऋणात्मक होता है ।
 - कारण (R): धातुओं में आवेश वाहक ऋणावेशित होते हैं जबिक अर्धचालकों में ये धनावेशित होते हैं।
- 17. अभिकथन (A): अनियमित आकृति के धारावाही समतलीय पाश से कोई चुम्बकीय क्षेत्र संबद्ध होता है जो पाश के तल के लम्बवत होता है। यदि तार लचीला हो, तो वह वृत्ताकार आकृति ले लेता है।
 - कारण (R): किसी चुम्बकीय क्षेत्र में जो पाश के तल के लम्बवत है, किसी धारावाही पाश के प्रत्येक बिन्दु पर कोई बल कार्य करता है जिसकी दिशा त्रिज्यत: बाहर की ओर होती है।

15. In which of the following diagrams is the capacitor 'C' connected correctly to provide smooth output of a half-wave rectifier?

Questions number 16 to 18 are Assertion (A) and Reason (R) type questions. Two statements are given — one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false and Reason (R) is also false.
- **16.** Assertion (A): The temperature coefficient of resistance is positive for metals and negative for semi-conductors.
 - Reason (R): The charge carriers in metals are negatively charged whereas in semiconductors they are positively charged.
- **17.** Assertion (A): A planar loop of irregular shape carrying current is subjected to a magnetic field acting perpendicular to the plane of the loop. If the wire is flexible, the loop takes a circular shape.
 - Reason (R): The force acting on each point of a current carrying loop, in a magnetic field perpendicular to its plane, is radially outward.

2

2

2

2

2

18. अभिकथन (A): अर्धचालक युक्तियों के निर्माण में जर्मेनियम के स्थान पर सिलिकॉन को वरीयता (प्राथिमकता) दी जाती है।

कारण (R): सिलिकॉन की तुलना में जर्मेनियम में ऊर्जा अन्तराल अधिक होता है।

खण्ड ख

- 19. (क) निर्वात में गमन करती किसी विद्युत-चुम्बकीय तरंग के विद्युत क्षेत्र का निरूपण $E_x = E_0 \sin \left(kz \omega t\right) \ \text{के रूप में किया गया है । इस समीकरण में तरंग की }$ (i) तरंगदैर्ध्य, और (ii) आवृत्ति से संबंधित प्राचलों को पहचानिए ।
 - (ख) किसी माध्यम में प्रकाश के वेग को निर्धारित करने वाले दो गुणधर्म लिखिए।

20. दो सर्वसम छड़ें, जिनमें से एक अनुचुम्बकीय पदार्थ और दूसरी प्रतिचुम्बकीय पदार्थ की है, किसी एकसमान चुम्बकीय क्षेत्र में स्थित हैं। प्रत्येक प्रकरण में चुम्बकीय क्षेत्र के पैटर्नों में होने वाले आपरिवर्तनों को चित्रित करके दर्शाइए। ताप में वृद्धि होने पर इन दो पदार्थों पर क्या प्रभाव पड़ता है?

- **21.** तरंगदैर्ध्य 3500 Å का प्रकाश दो धातुओं A और B, जिनके कार्यफलन क्रमश: 4.2 eV और 1.9 eV हैं, पर आपतन करता है । इनमें से कौन-सी धातु से प्रकाशिक-इलेक्ट्रॉन उत्पन्न होंगे ? अपने उत्तर की पुष्टि के लिए आवश्यक परिकलन कीजिए ।
- 22. किसी गाउसीय पृष्ठ से गुज़रने वाले अन्तर्मुखी और बहिर्मुखी वैद्युत फ्लक्स क्रमश: 2 ϕ और ϕ
 - (क) पृष्ठ द्वारा परिबद्ध नेट आवेश कितना है ?
 - (ख) यदि पृष्ठ से गुज़रने वाला नेट बिहर्मुखी फ्लक्स शून्य हो, तो क्या यह निष्कर्ष निकाला जा सकता है कि पृष्ठ के भीतर कोई आवेश नहीं है ? अपने उत्तर की पुष्टि कीजिए।
- 23. (क) किसी प्रकाश बल्ब को कब अधिक शक्ति प्रदान की जाती है बल्ब को जलाने के ठीक पश्चात् जब उसके फिलामेंट की चमक में वृद्धि हो रही होती है अथवा उसके पश्चात् जब उसकी चमक स्थायी हो जाती है ? क्यों ?

अथवा

(ख) किसी बैटरी को पहले तीन प्रतिरोधों R, 2R और 3R के श्रेणी संयोजन और फिर उनके पार्श्व संयोजन से संयोजित किया जाता है। इन दोनों प्रकरणों में तीनों प्रतिरोधों में से किसमें शक्ति क्षय अधिकतम होगा ? अपने उत्तर की पृष्टि कीजिए।

55/C/1

2

2

2

2

2

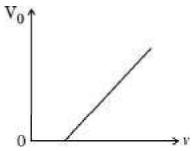
- **18.** Assertion (A): Silicon is preferred over germanium for making semiconductor devices.
 - Reason (R): The energy gap for germanium is more than the energy gap for silicon.

SECTION B

- 19. (a) The electric field of an electromagnetic wave passing through vacuum is represented as $E_x = E_0 \sin{(kz \omega t)}$. Identify the parameter which is related to the (i) wavelength, and (ii) the frequency of the wave in the above equation.
 - (b) Write two properties of a medium that determine the velocity of light in that medium.
- 20. Two identical bars, one of a paramagnetic material and another of a diamagnetic material are kept in a uniform magnetic field. Show diagrammatically the modifications in the pattern of magnetic field in each case. How are the two materials affected by increase in temperature?
- 21. Light of wavelength 3500 Å is incident on two metals A and B. Which of them will yield photoelectrons, if their work functions are 4.2 eV and 1.9 eV respectively? Make the necessary calculations to justify your answer.
- **22.** The inward and the outward electric flux through a Gaussian surface are 2ϕ and ϕ respectively.
 - (a) What is the net charge enclosed by the surface?

OR

- (b) If the net outward flux through the surface were zero, can it be concluded that there were no charges inside the surface? Justify your answer.
- 23. (a) When is more power delivered to a light bulb just after it is turned on and the glow of the filament is increasing or after the glow becomes steady? Why?


(b) A battery is connected first across the series combination and then across the parallel combination, of three resistances R, 2R and 3R. In which of the three resistances will power dissipated be maximum in the two cases? Justify your answer.

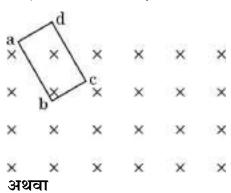
2

2

3

24. आरेख में किसी धातु के लिए आपितत एकवर्णी पुन्ज की आवृत्तियों के साथ निरोधी विभव V_0 के विचरण को दर्शाया गया है । सर्वप्रथम इस प्रकार का ग्राफ 1916 में आर.ए. मिलिकन ने सोडियम के लिए प्राप्त किया था ।

व्याख्या कीजिए कि आइंस्टाइन के प्रकाश-विद्युत समीकरण और इस ग्राफ का उपयोग करके, यदि आपको इलेक्ट्रॉन का आवेश दिया गया है, तो आप (i) प्लांक नियतांक, और (ii) धातु के कार्य फलन का मान किस प्रकार प्राप्त करेंगे।


25. (क) कोई 500 N/C का एकसमान विद्युत क्षेत्र E, +x-अक्ष के अनुदिश दिष्ट है । तीन बिन्दु O, B और A जिनके x और y निर्देशांक (cm में) क्रमश: (0,0), (4,0) और (0,3) हैं, इस क्षेत्र में स्थित हैं । बिन्दुओं (i) O और A, तथा (ii) O और B के बीच विभवान्तर परिकलित कीजिए ।

अथवा

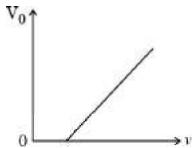
(ख) किसी समबाहु त्रिभुज, जिसकी भुजा की लंबाई $1\ m$ है, के शीर्षों A, B और C पर क्रमश: $1\ \mu C, -1\ \mu C$ और $2\ \mu C$ के तीन बिन्दु आवेश स्थित हैं । त्रिभुज की भुजाओं AB, BC और CA के मध्य-बिन्दु क्रमश: A_1, B_1 और C_1 हैं । इन आवेशों को A से A_1, B से B_1 और C से C_1 तक विस्थापित करने में किया गया नेट कार्य परिकलित कीजिए ।

खण्ड ग

26. (क) लेंज़ नियम लिखिए । जब xy-तल में किसी आयताकार चालक पाश abcd को z-अक्ष के अनुदिश दिष्ट किसी चुम्बकीय क्षेत्र के प्रदेश में गतिशील कराया जाता है, तो प्रेरित धारा की दिशा निर्धारित कीजिए ।

55/C/1

Page 14 of 27



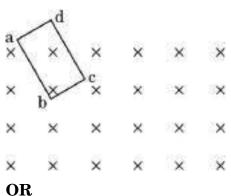
2

2

3

24. The figure shows the variation of stopping potential V_0 with frequencies of incident monochromatic beam for a metal. Such a graph was first obtained by R.A. Millikan in 1916 for sodium.

Explain how, using Einstein's photoelectric equation and the graph, you can obtain the value of (i) Planck's constant, and (ii) work function of the metal, given the value of charge on electron.

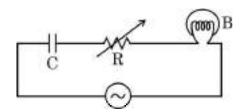

25. (a) A uniform electric field E of 500 N/C is directed along +x axis. O, B and A are three points in the field having x and y coordinates (in cm) (0, 0), (4, 0) and (0, 3) respectively. Calculate the potential difference between the points (i) O and A, and (ii) O and B.

OR

(b) Three point charges 1 μ C, -1 μ C and 2 μ C are kept at the vertices A, B and C respectively of an equilateral triangle of side 1 m. A_1 , B_1 and C_1 are the midpoints of the sides AB, BC and CA respectively. Calculate the net amount of work done in displacing the charge from A to A_1 , from B to B_1 and from C to C_1 .

SECTION C

26. (a) State Lenz's law. Determine the direction of the induced current when a rectangular conducting loop abcd in xy-plane is moved into a region of magnetic field which is directed along z-axis.


(ख) दो सर्वसम वृत्ताकार पाशों, जिनमें से एक कॉपर और दूसरा ऐलुमिनियम का है, को किसी चुम्बकीय क्षेत्र में, जो इन पाशों के घूर्णन-अक्ष के लम्बवत दिष्ट है, समान कोणीय चाल से अपने व्यासों के परित: घूर्णित कराया गया है। इन दो पाशों में (i) प्रेरित वि.वा. बल (emf), और (ii) धाराओं की तुलना कीजिए। अपने उत्तरों की पुष्टि कीजिए।

3

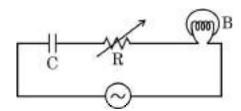
- **27.** (क) किसी गैल्वेनोमीटर को सीधे ही विद्युत धारा मापने के लिए उपयोग करने की सलाह क्यों नहीं दी जानी चाहिए ?
 - (ख) गैल्वेनोमीटर के पार्श्व में संयोजित किए जाने वाले प्रतिरोध का मान निम्न क्यों होना चाहिए ?
 - (ग) क्या किसी परिपथ में ऐमीटर द्वारा दर्शाया जाने वाला पाठ्यांक परिपथ में प्रवाहित वास्तविक धारा से कम अथवा अधिक होता है ? क्यों ?

3

28. दिए गए आरेख में आवृत्ति (v) के किसी ac स्रोत से श्रेणी में किसी संधारित्र C, परिवर्ती प्रतिरोधक R और एक बल्ब को संयोजित दर्शाया गया है । बल्ब कुछ चमक से उद्दीप्त है ।

बल्ब का उद्दीप्त होना किस प्रकार प्रभावित होगा, यदि

- (क) प्रतिरोध R और आवृत्ति (v) को समान रखते हुए संधारित्र की पट्टिकाओं के बीच के पृथकन को दुगुना कर दिया जाए ?
- (ख) धारिता C और आवृत्ति (v) के मान को समान रखते हुए प्रतिरोध R को कम कर दिया जाए ?
- (ग) C और R के समान मानों के लिए ac स्रोत की आवृत्ति कम कर दी जाए ? प्रत्येक प्रकरण में अपने उत्तर की पुष्टि कीजिए।


(b) Two identical circular loops, one of copper and the other of aluminium are rotated about their diameters with the same angular speed in a magnetic field directed perpendicular to their axes of rotation. Compare (i) the emf induced, and (ii) the current in the two loops. Justify your answers.

3

- **27.** (a) It is not advisable to use a galvanometer as such to measure current directly. Why?
 - (b) Why should the value of resistance connected in parallel to a galvanometer be low?
 - (c) Is the reading shown by an ammeter in a circuit less than or more than the actual value of current flowing in the circuit? Why?

3

28. The figure shows a capacitor C, a variable resistor R and a bulb connected in series to the ac source of frequency (v). The bulb glows with some brightness.

How will the glow of the bulb be affected, if the

- (a) separation between the plates of the capacitor is doubled, keeping resistance R and frequency (v) the same ?
- (b) resistance R is decreased keeping the value of capacitance C and frequency (v) same?
- (c) frequency of ac source is decreased for the same value of C and R?

 Justify your answer in each case.

- 29. (क) (i) किस प्रकरण में विवर्तन प्रभाव अधिक प्रबल होता है जब झिरी को दो ब्लेडों से बनाया जाता है अथवा जब झिरी को दो अंगुलियों से बनाया जाता है ?
 - (ii) पीले प्रकाश ($\lambda=6000~\text{Å}$) से $1\times10^{-4}~\text{m}$ चौड़ाई की किसी एकल झिरी को प्रदीप्त किया गया है । (i) झिरी से 1.5~m दूरी पर स्थित पर्दे पर विवर्तन पैटर्न का प्रेक्षण करने पर केन्द्रीय उच्चिष्ठ के दोनों ओर की दो काली लाइनों के बीच की दूरी, तथा (ii) प्रथम निम्निष्ठ का कोणीय विस्तार परिकलित कीजिए ।

अथवा

- (ख) (i) यदि एकवर्णी प्रकाश स्रोत को श्वेत प्रकाश स्रोत से प्रतिस्थापित कर दिया जाए, तो यंग के द्विझिरी प्रयोग में केन्द्रीय चमकीली फ्रिंज का वर्ण (रंग) क्या होगा ? अपने उत्तर के लिए कारण दीजिए।
 - (ii) यंग के किसी द्विझिरी प्रयोग में, झिरियों के बीच का पृथकन 0.3 mm तथा पर्दे की झिरियों से दूरी 1.5 m है । केन्द्रीय चमकीली फ्रिंज और छठी चमकीली फ्रिंज के बीच की दूरी 1.8 cm है । प्रयोग में उपयोग किए गए प्रकाश की तरंगदैर्ध्य ज्ञात कीजिए।
- **30.** (क) (i) किसी हाइड्रोजन परमाणु में कोई इलेक्ट्रॉन द्वितीय उत्तेजित अवस्था से प्रथम उत्तेजित अवस्था में कूदान करता है। हाइड्रोजन परमाणु के स्पेक्ट्रम की उस स्पेक्ट्रमी श्रेणी का नाम लिखिए जिसमें उत्सर्जित विकिरण पाया जा सकता है।
 - (ii) हाइड्रोजन स्पेक्ट्रम की बामर श्रेणी और पाशन श्रेणी की "सर्वाधिक ऊर्ज स्पेक्ट्रमी" रेखाओं की तरंगदैध्यों का अनुपात ज्ञात कीजिए।

अथवा

- (ख) (i) गितज ऊर्जा K का कोई α -कण परमाणु क्रमांक Z के किसी नाभिक का उपगमन कर रहा है । यह नाभिक के बहुत निकट पहुँचता है और फिर किसी दूरी (d) पर उपगमन करके अपनी दिशा उत्क्रमित करता है । α -कण की गितज ऊर्जा के पदों में उपगमन की निकटतम दूरी (d) के लिए व्यंजक प्राप्त कीजिए ।
 - (ii) कोई प्रोटॉन और कोई α-कण समान वेगों से किसी लक्ष्य नाभिक की ओर आमने-सामने की स्थिति में उपगमन करते हैं । इनकी लक्ष्य नाभिक की उपगमन की निकटतम दूरियों का अनुपात ज्ञात कीजिए ।

3

3

3

- **29.** (a) (i) In which case is diffraction effect more dominant slit formed by 2 blades or slit formed by two fingers?
 - (ii) Yellow light ($\lambda = 6000$ Å) illuminates a single slit of width 1×10^{-4} m. Calculate (i) the distance between two dark lines on either side of central maximum, in the diffraction pattern observed on a screen kept 1·5 m away from the slit, and (ii) the angular spread of the first minimum.

OR

- (b) (i) What will be the colour of the central bright fringe in Young's double slit experiment if the monochromatic source is replaced by a source of white light? Give reason for your answer.
 - (ii) In Young's double slit experiment, the slits are separated by 0.3 mm and the screen is placed 1.5 m away from the slits. The distance between the central bright fringe and the sixth bright fringe is found to be 1.8 cm. Find the wavelength of light used in the experiment.
- **30.** (a) (i) An electron in a hydrogen atom jumps from second excited state to the first excited state. Name the spectral series in the spectrum of hydrogen atom to which the emitted radiation belongs.
 - (ii) Find the ratio of the wavelengths of the "most energetic spectral" lines in the Balmer series to that in Paschen series of Hydrogen spectrum.

OR

- (b) (i) An α -particle having kinetic energy K approaches a nucleus of atomic number Z. It gets close to the nucleus and then approaches a distance (d) and reverses its direction. Obtain an expression for the distance of closest approach (d) in terms of kinetic energy of the α -particle.
 - (ii) A proton and an alpha particle approach a target nucleus in head-on position, with equal velocities. Find the ratio of their distances of closest approach to the target nucleus.

3

3

5

5

खण्ड घ

- 31. (क) (i) किसी खगोलीय दूरदर्शक द्वारा सामान्य समायोजन में किसी दूरस्थ बिम्ब का प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए । किसी दूरदर्शक की अधिक आवर्धन क्षमता और उच्च विभेदन के लिए उसके अभिदृश्यक और नेत्रिका लेंसों के चयन में किन मुख्य आवश्यक बातों को ध्यान में रखा जाता है ?
 - (ii) 20 cm फोकस दूरी का कोई उभयोत्तल लेंस अपवर्तन $\frac{4}{3}$ के जल में डूबा हुआ है। यदि उत्तल लेंस के पदार्थ का अपवर्तनांक $\frac{3}{2}$ है, तो इस लेंस की प्रकृति और फोकस दूरी में परिवर्तन, यदि कोई होता है, तो उसे ज्ञात कीजिए।

अथवा

- (ख) (i) प्रिज़्म कोण A के किसी प्रिज़्म द्वारा प्रकाश के अपवर्तन को दर्शाने के लिए किरण आरेख खींचिए तथा μ , A और न्यूनतम विचलन कोण δ_{m} के बीच संबंध प्राप्त कीजिए।
 - (ii) वक्रता त्रिज्या R और अपवर्तनांक μ के काँच से बने किसी समोत्तल लेंस को दो सर्वसम समतलोत्तल लेंसों में काटा गया है । समतलोत्तल लेंसों की फोकस दूरी ज्ञात कीजिए ।
- 32. (क) (i) किसी चालक में विद्युत धारा और मुक्त इलेक्ट्रॉनों के अपवाह वेग के बीच संबंध व्युत्पन्न कीजिए। ताप में वृद्धि के साथ किसी चालक के प्रतिरोध में विचरण की संक्षेप में व्याख्या कीजिए।
 - (ii) किसी अज्ञात प्रतिरोध से श्रेणी में संयोजित कोई ऐमीटर दो सर्वसम बैटिरयों, जिनमें प्रत्येक का वि.वा. बल (emf) 1.5~V है, के (i) श्रेणी संयोजन, और (ii) पार्श्व संयोजन के सिरों से संयोजित है । यदि इन दोनों प्रकरणों में रिकॉर्ड की गयी धाराएँ क्रमशः $\left(\frac{1}{2}\right)$ A और $\left(\frac{1}{3}\right)$ A हैं, तो प्रत्येक बैटरी का आन्तरिक प्रतिरोध परिकलित कीजिए ।

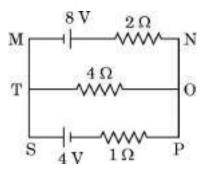
अथवा

5

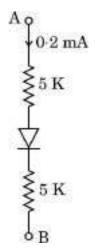
5

SECTION D

- 31. (a) (i) Draw a labelled ray diagram of an astronomical telescope to show the image formation of a distant object by it in normal adjustment. What are the main considerations required in selecting the objective and eyepiece lenses so that the telescope has large magnifying power and high resolution?
 - (ii) A biconvex lens of focal length 20 cm is immersed in water, whose refractive index is $\frac{4}{3}$. Find the change, if any, in the nature and the focal length of the lens. Refractive index of the material of convex lens is $\frac{3}{2}$.


OR

- (b) (i) Draw a ray diagram showing refraction of light through a prism of angle A and obtain the relation between μ , A and the angle of minimum deviation δ_m .
 - (ii) An equiconvex lens of radius of curvature R and made of glass of refractive index μ is cut into two identical plano-convex lenses. Find the focal length of the plano-convex lenses.
- **32.** (a) (i) Derive the relation between the current and the drift velocity of free electrons in a conductor. Briefly explain the variation of resistance of a conductor with rise in temperature.
 - (ii) An ammeter, together with an unknown resistance in series is connected across two identical batteries, each of emf $1.5\,\mathrm{V}$, connected (i) in series, and (ii) in parallel. If the current recorded in the two cases be $\left(\frac{1}{2}\right)$ A and $\left(\frac{1}{3}\right)$ A respectively, calculate the internal resistance of each battery.


OR

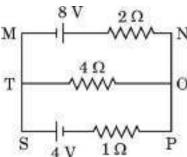
- (ख) (i) किरखोफ के नियम लिखिए । इन नियमों का उपयोग करके व्हीटस्टोन सेतु के संतुलन के लिए शर्त प्राप्त कीजिए ।
 - (ii) किरखोफ के नियम का उपयोग करके आरेख में दर्शाए गए परिपथ की शाखाओं MN, TO और SP से प्रवाहित धाराएँ निर्धारित कीजिए।

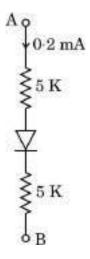
- 33. (क) (i) चालन विधा में किसी p-n संधि डायोड के I-V अभिलाक्षणिक का अध्ययन करने के लिए परिपथ आरेख खींचिए । ग्राफ पर इस डायोड की देहली वोल्टता अंकित कीजिए । इस वोल्टता के महत्त्व की व्याख्या कीजिए ।
 - (ii) आरेख में दर्शाए गए परिपथ में डायोड के सिरों पर अग्र वोल्टता पात 0.3~V है। A और B के बीच वोल्टता-अन्तर ज्ञात कीजिए।

अथवा

- (ख) (i) ऊर्जा-स्तर आरेखों के आधार पर ठोसों के धातुओं, रोधियों और अर्धचालकों में वर्गीकरण का संक्षेप में वर्णन कीजिए।
 - (ii) किसी सिलिकॉन डायोड में, वोल्टता 0.6~V से 0.7~V परिवर्तित होने पर धारा 10~mA से बढ़कर 20~mA हो जाती है । इस डायोड का गतिक प्रतिरोध परिकलित कीजिए ।

5


5


5

5

- (b) (i) State Kirchhoff's rules. Use them to obtain the condition of balance for a Wheatstone Bridge.
 - (ii) Use Kirchhoff's rule to determine the currents flowing through the branches MN, TO and SP in the circuit shown in the figure.

- **33.** (a) (i) Draw the circuit diagram used to study I V characteristics of a p-n junction diode in conducting mode. Mark on the graph the threshold voltage of the diode. Explain the significance of this voltage.
 - (ii) In the circuit shown in the figure, the forward voltage drop across the diode is 0.3 V. Find the voltage difference between A and B.

OR

- (b) (i) Briefly describe the classification of solids into metals, insulators and semi-conductors on the basis of energy level diagrams.
 - (ii) In a silicon diode, the current increases from 10 mA to 20 mA when the voltage changes from $0.6\,\mathrm{V}$ to $0.7\,\mathrm{V}$. Calculate the dynamic resistance of the diode.

1

2

खण्ड ङ

34. श्रेत्रफल A की धातु की पट्टिका

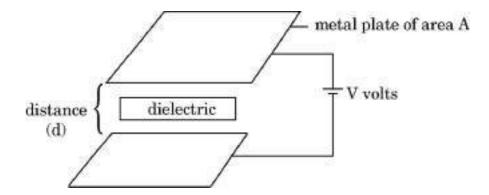
र्री

परावैद्युत

V वोल्ट

कोई समान्तर पट्टिका संधारित्र एक ऐसी व्यवस्था है जिसमें सर्वसम धातु की दो पट्टिकाओं को एक दूसरे से किसी लघु दूरी पर समान्तर रखा जाता है । किसी संधारित्र की धारिता दो पट्टिकाओं के साइज़ और उनके पृथकन पर तथा पट्टिकाओं के बीच रखे माध्यम के परावैद्युतांक पर भी निर्भर करती है । प्रतिरोधकों की भाँति संधारित्रों को भी श्रेणी अथवा पार्श्व अथवा दोनों के संयोजन में व्यवस्थित किया जा सकता है । पट्टिकाओं के बीच विद्युत क्षेत्र होने से आवेशित संधारित्र ऊर्जा संचित करते हैं ।

- (क) किसी समान्तर पिट्टका संधारित्र की पिट्टकाओं के बीच किसी परावैद्युत पदार्थ (माध्यम) को रखने पर उसकी धारिता 10 μF से बढ़कर 80 μF हो जाती है । इस माध्यम का परावैद्युतांक ज्ञात कीजिए ।
- (ख) n संधारित्र, जिनमें प्रत्येक की धारिता C है, श्रेणी में संयोजित हैं। इस संयोजन की तुल्य धारिता ज्ञात कीजिए।
- (ग) किसी संधारित्र को किसी बैटरी से संयोजित करके विभव (V) तक आवेशित किया गया है। कुछ समय बाद, बैटरी को वियोजित करके पट्टिकाओं के बीच कोई परावैद्युत रख दिया जाता है। पट्टिकाओं के बीच विभवान्तर और संधारित्र में संचित ऊर्जा पर क्या प्रभाव होगा ? अपने उत्तर की पुष्टि कीजिए।


अथवा

2

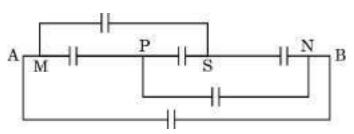
SECTION E

34.

A parallel plate capacitor is an arrangement of two identical metal plates kept parallel, a small distance apart. The capacitance of a capacitor depends on the size and separation of the two plates and also on the dielectric constant of the medium between the plates. Like resistors, capacitors can also be arranged in series or parallel or a combination of both. By virtue of electric field between the plates, charged capacitors store energy.

- (a) The capacitance of a parallel plate capacitor increases from 10 μF to 80 μF on introducing a dielectric medium between the plates. Find the dielectric constant of the medium.
- (b) n capacitors, each of capacitance C, are connected in series. Findthe equivalent capacitance of the combination.
- (c) A capacitor is charged to a potential (V) by connecting it to a battery. After some time, the battery is disconnected and a dielectric is introduced between the plates. How will the potential difference between the plates, and the energy stored in it be affected? Justify your answer.

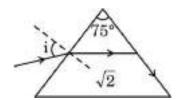
OR


1

1

2

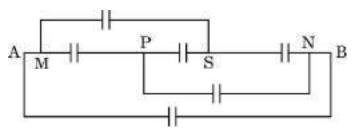
2


(ग) यदि प्रत्येक संधारित्र की धारिता C है, तो बिन्दुओं A और B के बीच तुल्य धारिता ज्ञात कीजिए ।

- 35. कोई प्रिज़्म त्रिभुजाकार आधार व शीर्ष का तीन आयताकार फलकों से घिरा पारदर्शी पदार्थ का ठोस माध्यम होता है । इसके किसी एक फलक पर आपतन कोण i पर आपितत प्रकाश किरण प्रिज़्म से गुज़रने पर दो बार अपवर्तित होती है । इस प्रकार यह अपने मूल पथ से किसी कोण δ पर विचिलत हो जाती है । कोण i के किसी निश्चित मान के लिए विचलन कोण न्यूनतम ($\delta = \delta_{\rm m}$) हो जाता है । इस स्थिति में, प्रिज़्म के भीतर अपवर्तित किरण उसके आधार के समान्तर गमन करती है । कोण Λ और कोण $\delta_{\rm m}$ के पदों में प्रिज़्म के पदार्थ के अपवर्तनांक μ के लिए कोई व्यंजक प्राप्त किया जा सकता है ।
 - (क) आपतन कोण i के साथ विचलन कोण δ के विचरण को आरेख खींचकर दर्शाइए ।
 - (ख) यह दर्शाइए की लघु प्रिज़्म कोण A के लिए प्रिज़्म के पदार्थ के अपवर्तनांक μ को $\mu = 1 + \frac{\delta_m}{\Delta} \ \, \hat{a} + \frac{\delta_m}{\Delta} \ \, \hat{b} + \frac{\delta_m}{\Delta} \$
 - (ग) कोई प्रकाश किरण किसी समबाहु प्रिज़्म से इस प्रकार गुज़रती है कि आपतन कोण और निर्गत कोण दोनों ही प्रिज़्म कोण A के बराबर हैं । प्रिज़्म के पदार्थ का अपवर्तनांक A के पदों में ज्ञात कीजिए ।

अथवा

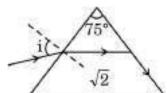
(ग) आरेख में दर्शाए अनुसार कोई प्रकाश किरण किसी प्रिज़्म, जिसका प्रिज़्म कोण 75° है, से गुज़रती है । प्रतिवेश के सापेक्ष प्रिज़्म के पदार्थ का अपवर्तनांक $\sqrt{2}$ है । आपतन कोण i ज्ञात कीजिए ।



1

2

2


(c) Find the equivalent capacitance between points A and B, if capacitance of each capacitor is C.

- 35. A prism is a solid transparent medium bounded by three rectangular faces with a triangular base and a top. A ray of light incident at angle i on one face of a prism suffers two refractions on passing through a prism. Hence it deviates through a certain angle δ from its original path. The angle of deviation becomes minimum ($\delta = \delta_m$) for a certain value of angle i. In such a condition, the refracted ray inside the prism becomes parallel to its base. An expression for refractive index μ of the material of the prism can be obtained in terms of angle A and angle δ_m .
 - (a) Show in a figure the variation of angle δ with angle of incidence i.
 - (b) Show that for a prism of small angle A, the refractive index μ of its material can be written as $\mu = 1 + \frac{\delta_m}{A}$.
 - (c) A ray of light passes through an equilateral prism such that both the angle of incidence and the angle of emergence are equal to the angle of prism A. Find the refractive index of the material of the prism, in terms of A.

OR

(c) A ray of light passes through a prism of angle 75°, as shown in the figure. The refractive index of the material of the prism, with respect to its surrounding is $\sqrt{2}$. Find the angle of incidence i.

Marking Scheme

Strictly Confidential

(For Internal and Restricted use only)

Senior Secondary School Supplementary Examination, July- 2023

ECT NAME: PHYSICS SUBJECT CODE: 042 PAPER CODE: SUBJECT NAME: PHYSICS PAPER CODE: 55/C/1

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problem which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. 2 "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." 3 Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while a religiously followed.
examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." 3 Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should
done according to one's own interpretation or any other consideration. Marking Scheme should
be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
The Head-Examiner must go through the first five answer books evaluated by each evaluated on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X" be marked Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand marginal and encircled. This may be followed strictly.
If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
If a student has attempted an extra question, answer of the question deserving more mark should be retained and the other answer scored out with a note "Extra Question".
No marks to be deducted for the cumulative effect of an error. It should be penalized only once
A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.

12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every
	day and evaluate 20 answer books per day in main subjects and 25 answer books per day in
	other subjects (Details are given in Spot Guidelines).
13	Ensure that you do not make the following common types of errors committed by the Examiner
	in the past:- Giving more marks for an answer than assigned to it.
	Wrong totaling of marks awarded on an answer.
	Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totaling on the title page.
	Leaving answer or part thereof unassessed in an answer book.
	Manage to to the second of the character and the still are an
	Wrong totaling of marks of the two columns on the title page. Wrong grand total
	Wrong grand total. Marks in words and figures not tallying/not same.
	 Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list.
	 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect
	answer.)
	 Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be
	marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected
	by the candidate shall damage the prestige of all the personnel engaged in the evaluation work
	as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again
	reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for
	spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the
	title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of
	the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are
	once again reminded that they must ensure that evaluation is carried out strictly as per value
	points for each answer as given in the Marking Scheme.

	MARKING SCHEME: PHYSICS(042)		
	Code:		
Q.No.	VALUE POINTS/EXPECTED ANSWERS	Marks	Total Marks
1.	(c) 25	1	1
2.	(d) $e(v_x B_y + v_y B_x)\hat{k}$	1	1
3.	(b) magnitude of magnetization	1	1
4.	(d) first decreases to become zero and then increases	1	1
5.	(b) speed	1	1
6.	(b) $\frac{I_0}{2}$	1	1
7.	(b)	1	1
8.	$(c)_8 O^{17}$	1	1
9.	(d) The voltage shown in V_1 lags behind in phase with the voltage shown in V_2 .	1	1
10.	(a) increase	1	1
11.	(a) 0°	1	1
12.	(b) 1:1	1	1
13.	(b) $\frac{R}{2}$	1	1
14.	(b) $(\frac{1}{2})$ revolution	1	1
15.		1	1
16.	(c)Assertion (A) is true, but Reason (R) is false.	1	1
17.	(a)Both Assertion (A) and Reason ® are true, but Reason (R) is the correct explanation of the Assertion (A)	1	1
18.	(c) Assertion (A) is true, but Reason (R) is false.	1	1
	SECTION B		
19.	(a) Identification of parameters \(\frac{1}{2} + \frac{1}{2} \) (b) Two properties of medium \(\frac{1}{2} + \frac{1}{2} \)	1/2	

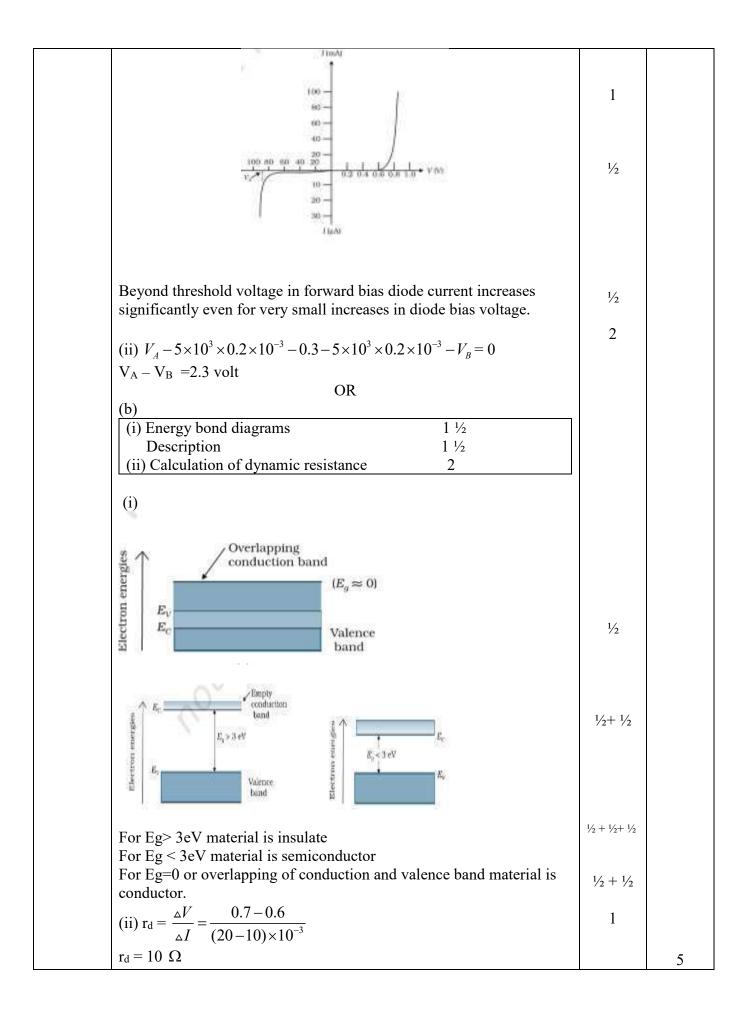
1			
	(a) Parameter relating wavelength is 'k' (= $\frac{2\pi}{\lambda}$)	1/2	
	Parameter relating frequency is ' ω ' (= 2 $\pi \nu$)	1/ ₂ 1/ ₂	
	(b) 1. Electric properties of the medium 2. Magnetic properties of the medium		
	Alternatively: i. Permittivity (ε) of the medium ii. Permeability (μ) of the medium		2
20.	Showing the modifications in the pattern of magnetic field $\frac{1}{2} + \frac{1}{2}$ Effect of increase in temperature $\frac{1}{2} + \frac{1}{2}$		
	(a)	1/2 + 1/2	
	(b)	72 72	
	No effect in case of diamagnetic materials. Magnetization/ magnetic susceptibility decrease in case of paramagnetic materials.	1/2	2
21.	Calculation of energy of incident light in 'eV' 1 Conclusion with justification $\frac{1}{1/2} + \frac{1}{1/2}$ $E = \frac{\lambda c}{\lambda}$		
	$= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{3500 \times 10^{-10} \times 1.6 \times 10^{-19}} eV$ E = 3.55 eV	1/2	
	Metal B Since energy of incident light is more than the work function of metal 'B'.	1/ ₂ 1/ ₂	
	(Note: Give full credit of one mark if student writes 'Metal B' only.)		2
L	I .	1	ı

22.			
	(a) Calculation of net charge 1		
	(b) Conclusion ½		
	Justification ½		
	Justification /2		
	(a) Net outward flux = $-2 \Phi + \Phi$		
	= - Φ	1/2	
	Charge enclosed = $-\Phi \varepsilon_o$	/ 2	
		1/2	
	(b) No	72	
	There may be charges (positive and negative) and net charge is zero.	1/2	2
		1/2	2
23.		72	
25.	(a) For Answer 1		
	Reason 1		
	(a) Power delivered just after it is turned on, will be more because	1	
	resistance of the bulb is low. After some time temperature of the bulb	1	
	increases and resistance also increases and therefore power $(\frac{V^2}{R})$	1	
	becomes low.	1	
	OR		
	For series Answer ½		
	Justification ½		
	For parallal Angwar		
	For parallel Answer ½		
	Justification ½		
	For garing		
	For series	1/	
	Power dissipated will be maximum for 3R.	1/2	
	Because current is same and power is proportional to resistance.	1/2	
	For parallel		
	Power dissipated will be maximum for R.	1/2	_
	Because voltage is same and power is inversely proportional to	1/2	2
	resistance.		
24.			
	Relating Einstein equation to the graph 1		
	(i) Finding value of Planck's constant from slope of the graph ½		
	(ii)Finding value of work function from intercept of the graph ½		
	According to Einstein's equation		
	$hv = \Phi_o + eV_o$		
	$eV_o = hv - \Phi_o$		
	$V_o = \frac{h}{e}v - \frac{\Phi_o}{e}$	1/2	
	o e e		
		1/2	

	This is a special of storicht lines as shown in Garage where shows in h		
	This is equation of straight line as shown in figure, where slope is $\frac{\pi}{e}$.		
	So from the value of slope from the graph and value of charge on electron value of Planck's constant can be calculated. Extrapolating	1/2	
	the graph we get y - intercept $\frac{\Phi_o}{a}$. From this we can find work	72	
	function given value of e.		2
25.	(i) Calculation of V_{OA} $\frac{1}{2} + \frac{1}{2}$		
	(ii) Calculation of V_{OB} $\frac{1}{2} + \frac{1}{2}$		
	(a) (i) $V_{OA} = E(x_2-x_1)$	1/2	
	$V_{OA} = 500 \times 0 = 0 \text{ volt}$	1/2	
	(ii) $V_{OB} = -E(x_2 - x_1)$	1/2	
	$V_{OB} = -500 \times (4 \times 10^{-2})$ = -20 V	1/2	
	OR Calculating of initial potential energy 1		
	Calculation of final potential energy ½ Calculation of net work done ½		
	Initial electrostatic potential energy of the system		
	$U_{i} = \frac{k}{r} [1 \times (-1) + (-1) \times 2 + (1) \times (2)] \times 10^{-12}$		
	$U_{i} = \frac{k}{r} [1 \times (-1) + (-1) \times 2 + (1) \times (2)] \times 10^{-12}$ $= \frac{9 \times 10^{9}}{1} [-1 - 2 + 2] \times 10^{-12}$		
	$=-9\times10^{-3}J$		
	Now $A_1B_1 = B_1C_1 = A_1C_1 = \frac{1}{2} m$	1	
	Final electrostatic potential energy of the system		
	$U_f = \frac{-9 \times 10^{-9}}{\frac{1}{2}} = -18 \times 10^{-3} \mathrm{J}$	1/2	
	Amount of work done W= U_f - U_i		
	$W = -18 \times 10^{-3} + 9 \times 10^{-3} = -9 \times 10^{-3} J$	1/2	2
	SECTION-C		
26.			
	(a) Statement of lenz's law 2 Finding direction of induced e.m.f 1 OR		
	(b) (i) Answer and Justification ½+1 (ii) Answer and justification ½+1		

	(a) Lenz's law "the polarity of induced e.m.f is such that it tends to produce a current which opposes the change in magnetic flux that produced it" Direction of induced current is abcd/anticlockwise OR	2	
	(b) (i)Same e.m.f induced in both cases because they are identical and moving with same angular speed in same magnetic field.	1½	
	(ii) Induced current is more in copper loops, as its resistance is lesser than that of aluminum.	1½	3
27.	(a) Explanation 1 (b) Explanation 1 (c) Answer ½ Explanation ½ (a) It will not measure accurate value of current because its high resistance will affect the current in the circuit. (b) To reduce the galvanometer resistance a small resistance is connected in parallel.	1 1	
	(c) It is less than the actual value of current because it has some resistance	1	3
28.	(a) Answer Justification (b) Answer Justification (c) Answer Justification (d) Justification (e) Answer Justification (f) Justification (g) Justification (g) Justification (h) Justification (h	1/2 1/2 1/2 1/2 1/2 1/2	

	(Note: If a student attempt using relevant formulas and conclude correctly give full credit)		3
29.	correctly give full credit)	1	3
	(a) (i) Answer 1		
	(ii) i. Calculation of distance		
	ii. calculation of angular spread 1		
	(i) slit formed by two blades	1	
	(ii) (i) separation between two dark lines		
	$=\frac{2\lambda D}{d}$	1/2	
	$=\frac{2\times6000\times10^{-10}\times1.5}{1\times10^{-4}}=18\times10^{-3}m$	1/2	
		'-	
	(ii) $\phi = \frac{\lambda}{a}$		
		1/2	
	$=\frac{6000\times10^{-10}}{1\times10^{-4}}$		
		1/2	
	$= 6 \times 10^{-3} \text{rad}$		
	OR		
	Justification ½ Justification ½		
	(ii) Formula ½		
	Calculation 1		
	Answer ½		
	(b) (i) White.	1/2	
	The interference pattern due to different component colors of white	72	
	light overlap (incoherently). The central bright fringes for different		
	colors are at the same position. Therefore the central fringe is white.	1/2	
	m ² D		
	(ii) $\lambda_n = \frac{n\lambda D}{d}$ $\lambda = \frac{\lambda_n d}{nD}$	1/2	
	a	/2	
	$\lambda = \frac{\gamma_n u}{nD}$	1	
	$1.8 \times 10^{-2} \times 0.3 \times 10^{-3}$		
	$\lambda = \frac{1.8 \times 10^{-2} \times 0.3 \times 10^{-3}}{6 \times 1.5}$		
	$\lambda = 6000 A^{\circ}$	1/2	3
	70 00071	, 2	
30.			
	(a) (i) Name of spectral series ½		
	(ii) Calculation of λ_B		
	Calculation of λ_p		
	Calculation of ratio ½		


	(a) (i) Balmer series		
		1/2	
	$(ii) \frac{1}{\lambda_B} = R\left[\frac{1}{2^2} - \frac{1}{\infty}\right]$		
		1/2	
	$\frac{1}{\lambda_B} = \frac{R}{4}$	1/2	
	1 1 1,	72	
	$\frac{1}{\lambda_p} = R\left[\frac{1}{3^2} - \frac{1}{\infty}\right]$		
	$\frac{1}{1}$ R	1/2	
	$\frac{1}{\lambda n} = \frac{1}{9}$	1/	
	$\frac{1}{\lambda p} = \frac{R}{9}$ $\frac{\lambda_B}{\lambda p} = \frac{4}{9}$	1/2	
	$\left \frac{\lambda_B}{\lambda_B} \right = \frac{1}{9}$	1/2	
	OR		
	(b) (i) Obtaining expression for distance of closest approach (ii) Finding the ratio of closest approaches		
	(ii) Finding the ratio of closest approaches 1½		
	(i) At the distance of closest approach.		
	$K = \frac{(Ze)2e}{4\pi\varepsilon_o d}$	1/2	
		, 2	
	$d = \frac{2Ze^2}{4\pi\varepsilon_o K}$		
	$d = \frac{2(Ze)q}{\frac{1}{2}mv^2 \times 4\pi\varepsilon_o}$	1	
	$d = \frac{1 - (-1)^{4}}{1 - 2}$		
	$\frac{-mv^2 \times 4\pi\varepsilon_o}{2}$	1/2	
	$_{J}$ $(Ze)q$, 2	
	$d = \frac{(Ze)q}{mv^2\pi\varepsilon_o}$		
	$d\alpha \frac{q}{}$		
	$d\alpha = m$	1/2	
	$d_p = 4m - 2$	72	
	$\frac{d_p}{d_\alpha} = \frac{e}{2e} \times \frac{4m}{m} = \frac{2}{1}$		
		1/2	3
	CECTION B		
2.1	SECTION-D		
31.	(a) (i) I shalled Pay Diagram of astronomical telegons		
	(a) (i) Labelled Ray Diagram of astronomical telescope 1 Considerations for large magnifying power ½		
	Considerations for high resolution ½		
	(ii) Calculation for new focal length 2		
	Charge in focal length ½		
	Nature of new lens ½		
			Щ.

(a) (i)	1
For large magnifying power	1/2
$f_o > f_e$ For high resolution	1/2
Aperture of objective should be large (ii) $\frac{1}{f_a} = (n_g - 1)[\frac{1}{R_1} - \frac{1}{R_2}]$	1/2
$f_a = (\frac{n_g}{n_w} - 1)[\frac{1}{R_1} - \frac{1}{R_2}]$ $\frac{1}{f_a} = (\frac{n_g}{n_w} - 1)[\frac{1}{R_1} - \frac{1}{R_2}]$	1/2
$f_{a} = (\frac{n_{g}}{n_{w}} - 1) \left[\frac{1}{R_{1}} - \frac{1}{R_{2}} \right]$ $\frac{f_{w}}{f_{a}} = \frac{(n_{g} - 1)}{(\frac{n_{g}}{n_{w}} - 1)}$ $\frac{f_{w}}{20} = \frac{(\frac{3}{2} - 1)}{(\frac{3}{2} \times \frac{3}{4} - 1)} = \frac{\frac{1}{2}}{\frac{1}{8}} = 4$ $f_{w} = 80 \text{ cm}$	1/2
$f_{\rm w}$ = 80 cm	1/2
	1/2
Changes in focal length $\Delta f = 80-60$ = 20 cm Nature of the lense is converging because f_w is positive OR (b)	1/2
(i) Ray diagram 1 Obtaining the relation between μ , A and δ m 2 (ii) Finding the focal length of plano-convex lens 2	
	1

From the figure		
$\angle A + \angle QNR = 180^{\circ}$		
From \(\triangle \text{QNR} \)		
$r_1 + r_2 + \angle QNR = 180^{\circ}$		
comparing the above equations	1/	
$r_1 + r_2 = A$ (1)	1/2	
$\boldsymbol{\delta} = (\mathbf{i} - \mathbf{r}_1) + (\mathbf{e} - \mathbf{r}_2)$	1./	
$\delta = i + e - A \qquad (2)$	1/2	
At the minimum derivation D _m		
$\delta = D_m$, i=e and $r_1 = r_2$		
From equation (1)	1/2	
2r=A		
$r=\frac{A}{2}$		
From equation (2)		
$D_{\rm m} = 2i-A$		
$i=\frac{A+D_m}{2}$		
The refractive index of the prism is		
	1/2	
$n_{21} = \frac{\sin i}{\sin r} = \frac{\sin \left[\frac{(A+D_m)}{2}\right]}{\sin \left[\frac{A}{2}\right]}$, 2	
$n_{21} = \frac{2}{\sin r} = \frac{2}{\sin r}$		
$\frac{\sin[\frac{\pi}{2}]}{2}$		
(ii)	1/2	
$1 1_1 1_2$	/2	
$\left[\frac{1}{f} = (n-1)\left[\frac{1}{p} - \frac{1}{p} \right] \right]$		
$\frac{1}{f} = (n-1)\left[\frac{1}{R_1} - \frac{1}{R_2}\right]$ $\frac{1}{f_1} = (n-1)\left[\frac{2}{R}\right]$	1/	
$\left \frac{1}{n} = (n-1)\left[\frac{2}{n} \right] \right $	1/2	
$\int_{1}^{\infty} (R^{-1})^{L} R^{-1}$	1./	
	1/2	
$\frac{1}{f_2} = (n-1)\left[\frac{1}{R}\right]$		
	1/2	
$f_2 = 2 f_1$		5
32.		
(a) (i) Derivation of relation between I and V _d 2		
Explanation 1		
(ii) Calculating internal resistance of each battery 2		
(1) Chieffini residente of each outery 2		
(a) (i)		
(4) (1)		
A D= 10 A A		
$\Delta x = v_d \Delta t - $		
O→ PC		
⊕→ ← 🛅	1/2	
	/2	
À		

	T T	
Total charge transported across the area A in time Δt is	1,	
$\Delta Q = -neAV_d \Delta t \qquad(1)$	1/2	
Also the amount of charge crossing area 'A' in time Δt is		
$\Delta Q = I \Delta t \qquad(2)$	1/2	
Comparing equation (1) and (2)		
$I=neAV_d$	1/2	
With increase in temperature, average speed of electrons increases		
resulting in more frequent collisions		
Hence relaxation time τ decreases		
-ml		
As $R = \frac{ml}{ne^2 \tau A}$		
	1	
Resistance increases.		
(ii) For series $I = \frac{E}{R+r}$		
R+r		
1 3		
$\frac{1}{2} = \frac{3}{R+2r}$		
	1.	
$R + 2r = 6 \qquad(1)$	1/2	
For parallel $\frac{1}{-} = \frac{1.5}{1.5}$		
$3 R \perp \frac{r}{2}$		
For parallel $\frac{1}{3} = \frac{1.5}{R + \frac{r}{2}}$		
$2R + r = 9$ After solving $r = 1 \Omega$	1/2	
After solving $r = 1 \Omega$	1	
OR		
(b)		
(i) Statement of Kirchhoff two rules $\frac{1}{2} + \frac{1}{2}$		
Obtaining the balanced condition 2		
(ii) Finding current in branches MN, T0 and SP 2		
(ii) Finding current in branches with, 10 and 5F 2		
(') Wind 1 - 60' - in a diam and a series of in a diam and a series of the series of t		
(i) Kirchhoff's junction rule - at any junction, the sum of the current	1/2	
entering the junction is equal to the sum of currents leaving the	/ 2	
junction.		
Kirchhoff second rule:	1/2	
The algebraic sum of changes in potential around any closed loop	72	
involving resistors and cells in the loop is zero.		
В.		
La Carte		
TR R. Lio		
ĭk ⊕ ≻i		
77 R. R. 17		
1 Shart	1/2	
Ď		
L Ch		
100		

	In balanced fridge Ig=0,		
	Hence I ₁ = I ₃ and I ₂ = I ₄ Using Kirchhoff's loop rule for closed loops ADBA and CBDC		
	$-I_1R_1 + 0 + I_1R_1 = 0$ (Ig=0)(1)	1/2	
	In the second loop $I_3 = I_1$, $I_4 = I_2$ $I_2R_4 + 0 - I_1R_3 = 0$ (2)	1/2	
	From equation (1) and (2)		
	$\frac{I_1}{I_2} = \frac{R_2}{R_1}$ and $\frac{I_1}{I_2} = \frac{R_4}{R_3}$		
		1/2	
	$\frac{R_2}{R_1} = \frac{R_4}{R_3}$		
	This is the condition for balanced Wheatstone bridge		
	(ii) In loop MNOTM	1/2	
	$2 I + 4 I_1 = 8$ (1) Loop OPSTO		
	$-I + 5 I_1 = -4$ (2)	1/2	
	On solving Current in MN, I = 4A		
	Current in TO, $I_1 = 0A$ Current in SP, $I_1 = 4A$	1	5
	Current in 51,111 471	1	3
33.	(a) (i)Circuit diagram 1	1	
	I-V characteristics 1 Moving of threshold voltage ½		
	Significance of threshold voltage ½		
	(ii) Finding voltage difference between A and B 2		
	Voltmeter(V)		
	(A) TOTAL CONTROL OF THE CONTROL OF		
	p n		
	Milliammeter	1	
	(mA)		
	Switch (a)		
	(a)		

	SECTION-E		
34.	(a) Finding dielectric constant (b) Finding equivalent capacitance (c) Effect on potential difference and justification 1/2 + 1/2 Effect on energy stored and justification OR		
	Calculation of effective capacitance 2		
	(a) $K = \frac{C}{C_0}$	1/2	
	$K = \frac{80\mu F}{10\mu F} = 8$	1/2	
	(b) $\frac{1}{C_S} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$	1/2	
	$\frac{1}{C_S} = \frac{n}{C}$ $C_S = \frac{C}{n}$ (c) Charge is constant	1/2	
	$Q_1 = Q_2$ $C_2 = KC_1$ $C_1 V_1 = K C_1 V_2$	1/2	
	$V_2 = \frac{V_1}{K}$ Potential diff decreases by a factor (1/K)	1/2	
	$U_2 = \frac{1}{2} \frac{Q^2}{C_2}$	1/2	
	$U_{2} = \frac{1}{2} \frac{Q^{2}}{C_{2}}$ $= \frac{1}{2} \frac{Q^{2}}{kC_{1}} = \frac{1}{k} \left(\frac{Q^{2}}{2C_{2}} \right)$	1/2	
	$U_2 = \frac{U_1}{K}$	1/2	
	Energy reduces by a factor of 1/K.		
	OR		
	For calculating effective capacitance = 2 C.	2	4

35. (a) Variation of δ with i 1 (b) Derivation of equation for small angle prism 1 (c) Calculation of μ in terms of A Calculation of angle of incident (i) 2 (a) 1 angle of moderner. III (b) $\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin A/2}$ 1/2 For small angle $\mu = \frac{\frac{A + \delta_m}{2}}{\frac{A/2}{A}}$ $\mu = \frac{A + \delta_m}{A}$ $\mu = 1 + \frac{\delta_m}{A}$ (c) i+e=A1/2 1/2 $\mu = \frac{\sin i}{\sin r}$ 1/2 $\mu = \frac{\sin A}{\sin A/2}$ 1/2 $\mu = \frac{2\sin(A/2)\cos(A/2)}{\sin(A/2)} = 2\cos(A/2)$ 1/2 OR $\frac{\sin i}{\sin r} = \sqrt{2}$ 1/2

$\frac{\sin r_2}{\sin 90^0} = \frac{1}{\sqrt{2}}$		
$\sin r_2 = \frac{1}{\sqrt{2}}$	1/2	
$r_2 = 45^0$	/2	
$r_1 + r_2 = A$ $r_1 + 45^0 = 75^0$		
$r_1 = 30^{\circ}$	1/2	
$\frac{\sin i}{\sin r_1} = \sqrt{2}$		
$\frac{\sin i}{\sin 30^0} = \sqrt{2}$		
$\sin i = \sqrt{2} \times \frac{1}{2}$		
$\sin i = \frac{1}{\sqrt{2}}$ $i = 45^{\circ}$		
$i=45^{\circ}$	1/2	4
		4