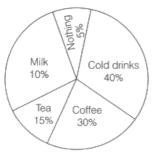
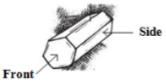
Class VIII Session 2024-25 Subject - Mathematics Sample Question Paper - 1

Time A	llowed: 3 hours	Maximum Mark	ks: 80	
Genera	l Instructions:			
	1. This Question Paper has 4 Sections A-D.			
	2. Section A has 20 MCQs carrying 1 mark each.			
	3. Section B has 6 questions carrying 02 marks each.			
	4. Section C has 8 questions carrying 03 marks each.			
	5. Section D has 6 questions carrying 04 marks each.			
	6. All Questions are compulsory.			
	7. Draw neat figures wherever required. Take π =22/7	wherever required if not stated.		
1.	Which of the following properties of rational number $\frac{3}{4} \times \left(\frac{7}{3} \times \frac{-4}{5}\right) = \left(\frac{3}{4} \times \frac{7}{3}\right) \times \frac{-4}{5}$	rs is shown below?	[1]	
	a) Distributivity of addition over multiplication	b) Commutativity of addition		
	c) Distributivity of multiplication over addition	d) Associativity of multiplication		
2.	The property represented by a \times (b + c) = a \times b + a	\times c is	[1]	
	a) closure property	b) distributive property		
	c) associative property	d) commutative property		
3.	If $rac{5x}{3} - 4 = rac{2x}{5}$, then the numerical value of 2x - 7 is	S	[1]	
	a) $\frac{19}{13}$	b) $\frac{13}{19}$		
	c) $-\frac{13}{19}$	d) 0		
4.	Solve: $5t - 3 = 3t - 5$		[1]	
	a) 0	b) 2		
	c) 1	d) -1		
5.	For which of the following figures, diagonals are per	pendicular to each other?	[1]	
	a) Trapezium	b) Kite		
	c) Parallelogram	d) Rectangle		
6.	State the name of a regular polygon of 9 sides.		[1]	
	a) heptagon	b) octagon		
	c) nonagon	d) Hexagon		
7.	The length and breadth of a rectangle are in the ratio	4 : 3. If the diagonal measures 25 cm then the perimeter of	[1]	


	the rectangle is		
	a) 70 cm	b) 60 cm	
	c) 80 cm	d) 56 cm	
8.	7396 students are sitting in an auditorium in such a m rows in the auditorium. How many rows are there in t	anner that there are as many students in a row as there are he auditorium?	[1]
	a) 76	b) 86	
	c) 80	d) 75	
9.	The smallest number by which 3087 may be multiplie	ed so that the product is a perfect cube, is	[1]
	a) 4	b) 6	
	c) 5	d) 3	
10.	Find the cubes of x, 4x and 5x.		[1]
	a) $4x^3$, $9x^3$, $16x^3$	b) x^3 , $64x^3$, $125x^3$	
	c) $8x^2$, $27x^2$, $64x^2$	d) $_{4x^2}$, $_{9x^2}$, $_{16x^2}$	
11.	Find C.I. on Rs 25,000 for 2 years at 20% per annum	compounded annually.	[1]
	a) Rs 12,000	b) Rs 13,000	
	c) Rs 11,000	d) Rs 10,000	
12.	Factorised form of r^2 - 10r + 21 is		[1]
	a) (r + 7) (r + 3)	b) (r - 7)(r - 3)	
	c) (r - 7) (r + 3)	d) (r -1) (r - 4)	
13.	The three-dimensional figure formed by rotating a cir	cle is:	[1]
	a) Sphere	b) Cone	
	c) Hemisphere	d) Cylinder	
14.	The following figure represents a:		[1]
	a) Convex polyhedron	b) Cylinder	
	c) Concave polyhedron	d) Polygon	
15.	A room is 15 metres long, 4 metres broad and 3 metre	es high. Find the cost of whitewashing its four walls at 50 P.	[1]
	per m ² .		
	a) ₹ 55	b) ₹ 60	
	c) ₹ 57	d) ₹ 52	
16.	If the volume of a cube is 1728 cm ³ , then its surface a	irea is:	[1]
	a) 144 cm ²	b) 912 cm ²	

	c) 864 cm ²	d) _{288 cm²}	
17.	The value of $\left(\frac{2}{5}\right)^{-2}$ is		[1]
	a) $\frac{4}{25}$	b) $\frac{5}{2}$	
	c) $\frac{4}{5}$	d) $\frac{25}{4}$	
18.	If $3^{x+8} = 27^{2x+1}$ then the value of x will be:		[1]
	a) 1	b) -2	
	c) 7	d) 3	
19.	Simplify: $(-3)^2 imes \left(rac{5}{3} ight)^2$		[1]
	a) 4	b) 27	
	c) 25	d) 8	
20.	$9m^2 + 12mn + 4n^2$ is same as		[1]
	a) $(3m + 2n)^2$	b) $(3m - 2n)^2$	
	c) (3m - 2n)	d) (3m + 2n)	
21.	Using suitable rearrangement find the sum: $-5+rac{7}{10}$	$rac{7}{5}+rac{3}{7}+(-3)+rac{5}{14}+rac{-4}{5}$	[2]
22.	Solve the equation and check your result: $5x + 9 = 5$	+ 3x	[2]

- 22. Solve the equation and check your result: 5x + 9 = 5 + 3x
- 23. A bag has 4 red balls and 2 yellow balls. (The balls are identical in all respects other than colour). A ball is [2] drawn from the bag without looking into the bag. What is probability of getting a red ball? Is it more or less than getting a yellow ball?


OR

A survey was carried out to find the favourite beverage preferred by a certain group of young people. The following pie chart shows the findings of this survey.

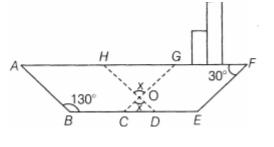
From this pie chart, answer the following:

- i. Which type of beverage is liked by the maximum number of people?
- ii. If 45 people like tea, how many people were surveyed?
- 24. The dimensions of a rectangular field are 80 m and 18 m. Find the length of its diagonal.
- 25. For the given solid draw the side view and front view?

Find the value of x, so that $(-2)^3 \times (-2)^{-6} = (-2)^{2x-1}$ 26.

OR

[2]


[2]

[2]

Page 3 of 13

Simplify and write in exponential form $:(-2)^{-3} \times (-2)^{-4}$

- 27. Solve: $5x + \frac{7}{2} = \frac{2}{2}x 14$
- 28. In the following figure of a ship, ABDH and CEFG are two parallelograms. Find the value of x.

OR

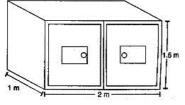
[3]

[3]

[3]

[3]

ABCD is a parallelogram. The bisector of angle A intersects CD at X and bisector of angle C intersects AB at Y. Is AXCY a parallelogram? Give reason.


- 29. 2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of [3] rows. Find the number of rows and the number of plants in each row.
- 30. Is 1188 a perfect cube? If not, by which smallest natural number should 1188 be divided so that the quotient is a **[3]** perfect cube?
- 31. The price of a TV is ₹13000. The sales tax charged on it is at the rate of 12%. Find the amount that Vinod will [3] have to pay if he buys it.

OR

The marked price of a DVD is ₹4500. A shopkeeper allows two successive discounts of 10% and 5% by the force of a customer. Find the selling price of the customer after two discounts are given.

32. Add
$$p^3 - 1$$
, $p^3 + p + 2$ and $p^2 - 2p + 1$.

33. Rukhsar painted the outside of the cabinet of measure $1 \text{ m} \times 2 \text{ m} \times 1.5 \text{ m}$. How much surface area did she **[3]** cover if she painted all except the bottom of the cabinet.

34. Factorise: $(l + m)^2 - (l - m)^2$

35. Draw a pie chart showing the following information. The table shows the colours preferred by a group of people. [4]

Colours	Number of people
Blue	18
Green	9
Red	6
Yellow	3
Total	36

Find the proportion of each sector. For example, Blue is $\frac{18}{36} = \frac{1}{2}$; Green is $\frac{9}{36} = \frac{1}{4}$ and so on. Use this of find the corresponding angle.

36. A sum of money becomes ₹ 17,640 in 2 years and ₹ 18,522 in 3 years at the same rate of interest compounded [4] annually. Find the rate of interest.

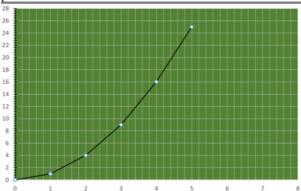
37. Find the product of
$$\left(\frac{1}{2}p^3q^6\right)\left(\frac{-2}{3}p^4q\right)(pq^2)$$
 [4]
38. Find the area of the following fields. All dimensions are in metres. [4]

$$\int_{0}^{\frac{1}{40}} \int_{0}^{\frac{1}{40}} \int_{0}^{\frac$$

The dimensions of a cuboid are in the ratio of 2:3:4 and its total surface area is 208m². Find its dimensions.

39. Factorize $6x^2 - 13x + 6$

OR


[4]

[4]

Factorise the expression and divide them as directed: $(5p^2 - 25p + 20) \div (p - 1)$

- 40. Consider the relation between the area and the side of a square given by $A = x^2$.
 - a. Draw a graph to show this relation.
 - b. From the graph, find the value of A when x = 4.
 - c. Is this graph a linear graph?

Side of square (x)	0	1	2	3	4	5
Area of square (A)	0	1	4	9	16	25

Solution

1.

(d) Associativity of multiplicationExplanation: Associativity of multiplication

2.

(b) distributive propertyExplanation: Distributive property

3.

(c) $-\frac{13}{19}$ Explanation: $\frac{5x}{3} - 4 = \frac{2x}{5}$ $\frac{5x}{3} - \frac{2x}{5} = 4$ $\frac{25x - 6x}{15} = 4$ $19x = 15 \times 4$ $x = \frac{60}{19}$ hence, 2x - 7 $= 2 \times \frac{60}{19} - 7$ $= \frac{120 - 133}{19}$ $= -\frac{13}{19}$

4.

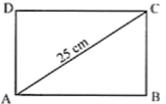
(d) -1

Explanation: 5t - 3 = 3t - 5by transposing both sides 5t - 3t = -5 + 32t = -2t = -2/2t = -1

5.

(b) Kite

Explanation: The diagonals of a kite are perpendicular to each other.


6.

(c) nonagon

Explanation: A nonagon is a plane figure with nine straight sides and nine angles.

7. **(a)** 70 cm

Explanation: Let ABCD be the rectangle.

Let AC be the diagonal, where AC = 25 cm. Length and breadth of a rectangle are in the ratio 4 : 3 Length of rectangle = 4x and Breadth of rectangle = 3x By Pythagoras theorem, we have $AB^2 + BC^2 = AC^2$ $\Rightarrow (4x)^2 + (3x)^2 = (25)^2$ $\Rightarrow 16x^{2} + 9x^{2} = 625$ $\Rightarrow 25x^{2} = 625$ $\Rightarrow x^{2} = 25 \Rightarrow x = \pm 5$ Since the side of the rectangle cannot be negative, so x = -5 is neglected $\therefore x = -5$ So, length of the rectangle = 4x = 4 × 5 = 20 cm Breadth of the rectangle = 3x = 3 × 5 = 15 cm So, perimeter of the rectangle = 2(1 + b) = 2(20 + 15) = 2(35) = 70 cm

8.

(b) 86

Explanation: Let number of students sitting in a row = 'x'

- \therefore Number of rows in auditorium = 'x'
- \therefore Number of students sitting in auditorium

 $= x \times x = x^{2}$ Now x² = 7396 $\therefore x = \sqrt{7396}$ 86 873 96 64 166 09 96 9 96 000 $\therefore x = \sqrt{7396} = 86$

Number of rows in auditorium = 86

9.

(d) 3 **Explanation:** Writing 3087 as a product of a prime factors, we have

 $\therefore 3087 = 3 \times 3 \times \underline{7} \times \underline{7} \times \underline{7}$

Clearly, to make it a perfect cube it must be multiplied by 3.

10.

(b) x^3 , $64x^3$, $125x^3$

Explanation: The cubes of $x = x \times x \times x = x^3$

$$4x = 4x \times 4x \times 4x = 64x^3$$

$$5x = 5x \times 5x \times 5x = 125x^3$$

11.

(c) Rs 11,000 Explanation: C.I. $=P(1 + \frac{r}{100})^n - P$ $= 25,000(1 + \frac{20}{100})^2 - 25,000$ $= 25,000(\frac{6}{5})^2 - 25,000$ = 36,000 - 25,000= Rs 11,000

12.

(b) (r - 7)(r - 3)

Explanation: We have, $r^2 - 10r + 21$

 $= r^2 - 7r - 3r + 21 = r(r - 7) - 3(r - 7)$ [by splitting the middle term, so that the product of their numerical coefficients is equal constant term]

$$= (r - 7)(r - 3) [:: x^{2} + (a + b)x + ab = (x + a)(x + b)]$$

13. **(a)** Sphere

Explanation: Sphere

(a) Convex polyhedron

Explanation: Convex polyhedron, as it is bounded by plane polygonal faces.

15.

14.

(c) ₹ 57

Explanation: Area of 4 walls = $2(l \times b] \times h$

$$= 2 \times [15 + 4] \times 3 = 114m^2$$

Cost of painting at the rate of 50 paisa per m²

$$=\frac{1}{2}$$
 × 114 = ₹7

16.

(c) 864 cm²

Explanation: Let the side of the cube be a cm

 $a^{3} = 1728$ $a = \sqrt[3]{1728}$ a = 12 cmSurface area of the cube = $6a^{2}$ $= 6 \times 12^{2}$ $= 6 \times 144$ $= 6 \times 144$ $= 864 \text{ cm}^{2}$

17. **(d)** $\frac{25}{4}$

Explanation: Using law of exponents, $a^{-m} = \frac{1}{a^m}$ [: a is non-zero integer]

$$\therefore \quad \left(\frac{2}{5}\right)^{-2} = \frac{1}{\left(\frac{2}{5}\right)^2} = \frac{1}{\frac{4}{25}} = \frac{25}{4}$$

18. **(a)** 1

Explanation: $3^{(x+8)} = 3(2x + 1)$ $3^{x+8} = 3^{6x+3}$ x + 8 = 6x + 3 5x = 5 $x = \frac{5}{5}$ x = 1

19.

(c) 25
Explanation:
$$= (-3)^2 \times \left(\frac{5}{3}\right)^2$$

 $= (9) \times \left(\frac{5^2}{3^2}\right)$
 $= 9 \times \frac{25}{9}$
 $= 25$

20. **(a)** $(3m + 2n)^2$

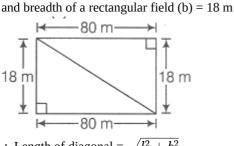
Explanation: $9m^2 + 12mn + 4n^2$

 $= (3m)^{2} + 2(3m)(2n) + (2n)^{2}$ $= (3m + 2n)^{2}$ 21. We have, $-5 + \frac{7}{10} + \frac{3}{7} + (-3) + \frac{5}{14} + \left(\frac{-4}{5}\right)$ $= -5 + (-3) + \frac{7}{10} + \left(\frac{-4}{5}\right) + \frac{3}{7} + \frac{5}{14}$ $= -8 + \frac{7-8}{10} + \frac{6+5}{14} = -8 - \frac{1}{10} + \frac{11}{14}$ $= \frac{-560-7+55}{70}$ $= \frac{-512}{70} = \frac{-256}{35}$ 22. 5x + 9 = 5 + 3x $5x - 3x = 5 - 9 \dots$ [Transposing 3x to L.H.S. and 9 to R.H.S] $\therefore 2x = -4$ $\therefore x = -\frac{4}{2} \dots$ [Dividing both sides by 2] $\therefore x = -2$ this is the required solution. Verification L.H.S. = 5(-2) + 9 = -10 + 9 = -1R.H.S. = 5 + 3(-2) = 5 - 6 = -1Therefore, L.H.S = R.H.S 23. There are in all (4 + 2 =) 6 outcomes of the event. Catting a red ball consists of 4 outcomes

Getting a red ball consists of 4 outcomes.

Therefore, the probability of getting a red ball is $\frac{4}{6} = \frac{2}{3}$.

In the same way the probability of getting a yellow ball = $\frac{2}{3} = \frac{1}{3}$.


Therefore, the probability of getting a red ball is more than that of getting a yellow ball.

OR

- i. The percentage of people preferring cold drinks is maximum. So, cold drinks is liked by the maximum number of people.
- ii. From the pie chart, number of people who like tea = 45
 - \Rightarrow 15% of total number of people surveyed = 45
 - $\Rightarrow \frac{15}{100} \times \text{Total number of people surveyed} = 45$

$$\therefore$$
 Total number of people surveyed = $\frac{45 \times 100}{15}$ = 300

24. Here, length of a rectangular field
$$(l) = 80 m$$

: Length of diagonal = $\sqrt{l^2 + b^2}$ = $\sqrt{(80)^2 + (18)^2}$

 $=\sqrt{6400+324}$

 $=\sqrt{6724} = 82 \text{ m}$

25.	Object	Front View	Side View
	- Contraction of the second se	\bigcirc	

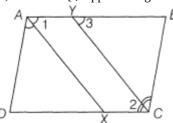
26. We have, $(-2)^3 \times (-2)^{-6} = (-2)^{2x-1}$

Using law of exponents, $a^{m} \cdot a^{n} = (a)^{m+n} [:: a \text{ is non-zero integer}]$

Then,
$$(-2)^3 \times (-2)^{-6} = (-2)^{2x-1}$$

 $\Rightarrow (-2)^{3-6} = (-2)^{2x-1}$
 $\Rightarrow (-2)^{-3} = (-2)^{2x-1}$

On comparing both sides, we get -3 = 2x - 1


 $\Rightarrow 2x = -2 \Rightarrow x = -1$

 $(-2)^{-3} \times (-2)^{-4}$ $=(-2)^{(-3)+(-4)}$ $=(-2)^{-7}$ 27. $5x + \frac{7}{2} = \frac{3}{2}x - 14$ Multiplying both sides of the equation by 2, we get $2 imes \left(5x + rac{7}{2}
ight) = 2 imes \left(rac{3}{2}x - 14
ight)$ $(2 \times 5x) + (2 \times \frac{7}{2}) = (2 \times \frac{3}{2}x) - (2 \times 14)$ 10x + 7 = 3x - 2810x - 3x = -28 - 77x = -35 $x = \frac{-35}{7}$ x = -5 28. We have, two parallelograms ABDH and CEFG. Now, in ABDH, $\therefore \angle ABD = \angle AHD = 130^{\circ}$ [\therefore opposite angles of a parallelogram are equal] and \angle GHD = 180° - \angle AHD = 180° - 130° [linear pair] \Rightarrow 50° = \angle GHO Also, \angle EFG + \angle FGC = 180° [: adjacent angles of a parallelogram are supplementary] $\Rightarrow 30^{\circ} + \angle FGC = 180^{\circ} \Rightarrow \angle FGC = 180^{\circ} - 30^{\circ} = 150^{\circ}$ and \angle HGC + \angle FGC = 180° [linear pair] ∴ ∠HGC = 180° - ∠FGC = 180° - 150° = 30° = ∠HGO In Δ HGO, by using angle sum property, \angle OHG + \angle HGO + \angle HOG = 180° \Rightarrow 50° + 30° + x = 180° \Rightarrow x = 180° - 80° =100°

OR

Given, ABCD is a parallelogram.

So, $\angle A = \angle C$ [:: opposite angles of a parallelogram are equal]

 $\therefore \quad \frac{\angle A}{2} = \frac{\angle C}{2}$ [dividing both the sides by 2]

 $\angle 1 = \angle 2$ [alternate angles]

But $\angle 2 = \angle 3$ [:: AB || CD and CY is the transversal]

```
∴∠1 = ∠3
```

But they are pair of corresponding angles.

.:. AX || YC(i)

AY || XC [:: AB || DC] ...(ii)

From Eqs. (i) and (ii), we get

AXCY s a parallelogram.

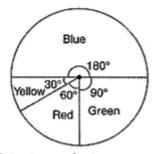
29. Let the number of rows be x.

Then number of plants in each row = x

: Number of plants in x rows = $x \times x = x^2$

But 2025 plants are to be planted in a garden.

$$\therefore x^2 = 2025$$


 $\therefore x = \sqrt{2025}$

The prime factorisation of 2025 is

3 | 2025 3 675 3 225 3 75 5 25 5 $2025 = \underline{3 \times 3} \times \underline{3 \times 3} \times \underline{5 \times 5}$ $\therefore x = \sqrt{3 imes 3 imes 3 imes 3 imes 3 imes 5 imes 5}$ $\therefore x = 3 \times 3 \times 5$: x = 45 Hence, the number of rows is 45 and the number of plants in each row is 45. 30. 1188 = 2 \times 2 \times 3 \times 3 \times 3 \times 11 The primes 2 and 11 do not appear in groups of three. So, 1188 is not a perfect cube. In the factorisation of 1188, the prime 2 appears only two times and the prime 11 appears once. So, if we divide 1188 by $2 \times 2 \times 11 = 44$, then the prime factorisation of the quotient will not contain 2 and 11. Hence the smallest natural number by which 1188 should be divided to make it a perfect cube is 44. And the resulting perfect cube is $1188 \div 44 = 27 = 3^3$ 31. Price of TV = ₹ 13000 Sales tax charged on it = 12% of ₹ 13000 = ${\displaystyle \{ rac{12}{100} \times 13000 \ }$ = ₹ 1560 : Sale price + sales tax = ₹ 13000 + ₹ 1560 = ₹ 14560 Hence, the amount that Vinod will have to pay if he buys it is ₹ 14560. OR M.P. of DVD = ₹ 4500 First discount = 10% of ₹ 4500 $=\frac{10}{100}$ × 4500 = ₹450 Price after first discount = ₹ 4500 - ₹ 450= ₹ 4050 Second discount = 5% of reduced price $=rac{5}{100} imes Rs.4050 = rac{20250}{100} =$ ₹202.50 Net selling price of the DVD = ₹ 4050 - ₹ 202.50 = ₹3847.50. p^3 32. $\frac{+p^{3}+p+2}{+p^{2}-2p+1}$ $\frac{2p^{3}+p^{2}-p+2}{+p^{2}-p+2}$ 33.1 = 2 m b = 1 mh = 1.5 m Required area $= 2 (l \times b + b \times h + h \times l) - l \times b$ = 2 (2 × 1 + 1 × 1.5 + 1.5 × 2) m^2 – (2 × 1) m^2 $= 13 \text{ m}^2 - 2 \text{ m}^2$ $= 11 \text{ m}^2$ Hence, she covered 11 m² of surface area. 34. $(l + m)^2 - (l - m)^2$ $= l\{(l + m) - (l - m)\} \{(l + m) + (l - m)\} \dots [Applying Identity III]$ = (2m) (2l)= 4lm Colours Number of people Proportion Corresponding angle 35.

Blue	18	$\frac{18}{36} = \frac{1}{2}$	$rac{1}{2} imes 360^\circ = 180$
Green	9	$\frac{9}{36} = \frac{1}{4}$	$rac{1}{4} imes 360^\circ=90$
Red	6	$\frac{6}{36} = \frac{1}{6}$	$rac{1}{6} imes 360^\circ=60$
Yellow	3	$\frac{3}{36} = \frac{1}{12}$	$rac{1}{12} imes 360^\circ=30$
Total	36		

Pie chart

36. Let Principal = P Rate of Interest = R Amount₁ (A₁) = ₹ 17,640 Time Period1 (T₁) = 2 years $A_1 = P\left(1 + \frac{R}{100}\right)^{T_1}$ 17,640 = $P\left(1 + \frac{R}{100}\right)^2$ Amount₂ (A₂) = ₹ 18,522 Time Period₂ (T₂) = 3 years $A_2 = P\left(1 + \frac{R}{100}\right)^{T_2}$ 18,522 = $P\left(1 + \frac{R}{100}\right)^3$ $\frac{A_1}{A_2} = \frac{18,522}{17,640} = \frac{P(1 + \frac{R}{100})^3}{P(1 + \frac{R}{100})^2}$ $\frac{21}{20} = \frac{(1 + \frac{R}{100})^3}{(1 + \frac{R}{100})^2} = 1 + \frac{R}{100}$ $\frac{21}{20} - 1 = \frac{R}{100}$ $R = \frac{21 - 20}{20} \times 100 = \frac{1}{20} \times 100 = = 5\%$ 37. $\left(\frac{1}{2}p^3q^6\right)\left(\frac{-2}{3}p^4q\right)(pq^2)$ $= \frac{1}{2} \times \frac{-2}{3} \times p^3q^6 \times p^4q \times pq^2$ $= \frac{-1}{3} \times p^8q^9$

38. We have,

Area of the given figure = Area of Δ EFH + Area of rectangle EDCI + Area of trapezium FHJG + Area of trapezium ICBK + Area of Δ GJA + Area of Δ KBA

Now, Area of $\Delta EFH = \frac{1}{2} \times \text{Base} \times \text{Height}$ $= \frac{1}{2} \times 40 \times 80$ $= 1600 \text{m}^2$ Area of rectangle EDCI = Length × Breadth = 100 × 160 $= 16000 \text{ m}^2$ Area of trapezium, FHJG = $\frac{1}{2} \times [\text{Sum of parallel sides}] \times \text{Height}$ $= \frac{1}{2} \times [40 + 160] \times 160$ $= \frac{200}{2} \times 160$ $= 100 \times 160$

 $= 16000 \text{m}^2$ Area of trapezium, ICBK = $\frac{1}{2} \times [$ Sum of parallel sides $] \times$ Height $=\frac{1}{2} \times [60 + 100] \times 120$ $=rac{1}{2} imes 160 imes 120$ = 80 imes 120 $= 9600 m^2$ Area of $\Delta AJG = \frac{1}{2} \times Base \times Height$ $=rac{1}{2} imes 160 imes 100$ $= 80 \times 100$ $= 8000 \text{ m}^2$ Area of $\Delta KBA = \frac{1}{2} \times \text{Base} \times \text{Height}$ $=\frac{1}{2} \times 60 \times 60$ $= 1800m^2$ Therefore, the area of the complete figure = 1600 + 16000 + 16000 + 9600 + 8000 + 1800 $= 53000 \text{ m}^2$ OR Let the dimensions be 2x, 3x and 4x in metres. Total surface area = 208 m^2 2[(2x)(3x) + (3x)(4x) + (4x)(2x)] = 208 $2[6x^2 + 12x^2 + 8x^2] = 208$ $2[26x^2] = 208$ $52x^2 = 208$ $x^2 = \frac{208}{52}$ $x^2 = 4m$ x =√4m x =2m Length =2x = 2(2m) = 4mBreadth =3x = 3(2m) = 6mHeight =4x = 4(2m) = 8m39. The given expression is $6x^2 - 13x + 6$ Here coefficient of $x^2 = 6$, coefficient of x = -13 and constant term = 6 So we write the middle term -13x as -4x, -9xThus we have, $6x^2 - 13x + 6 = 6x^2 - 4x - 9x + 6$ = 2x(3x-2) - 3(3x-2)=(3x-2)(2x-3)OR $(5p^2 - 25p + 20) \div (p - 1)$ $= \frac{5(p^2 - 5p + 4)}{2}$ $=\frac{5(p^2-p-4p+4)}{5(p^2-p-4p+4)}\dots$ [Applying Identity IV] $= \frac{p-1}{5\{p(p-1)-4(p-1)\}}$ $=\frac{p-1}{5(p-1)(p-4)}$ p-1= 5 (p - 4)40. a. The graph is drawn. b. From the graph it is clear that area when x = 4 is 16. c. This graph is not a linear graph.