Series &RQPS/S

रोल नं.
Roll No.

प्रश्न-पत्र कोड Q.P. Code

55/S/2

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

NOTE

	नाट		NOTE
(1)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 27 हैं ।	(I)	Please check that this question paper contains 27 printed pages.
(II)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।	(II)	Please check that this question paper contains 33 questions.
(III)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(III)	Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
/I\ /\		(1\/)	Diagon write down the corial number of
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(1 V)	Please write down the serial number of the question in the answer-book before attempting it.

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** एवं **ङ**।
- (iii) खण्ड क में प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख** में प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (v) खण्ड ग में प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) खण्ड घ में प्रश्न संख्या 29 तथा 30 केस अध्ययन-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, **खण्ड क** के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए एक अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$
 $h = 6.63 \times 10^{-34} \text{ Js}$
 $e = 1.6 \times 10^{-19} \text{ C}$
 $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$
 $\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
इलेक्ट्रॉन का द्रव्यमान $(m_e) = 9.1 \times 10^{-31} \text{ kg}$
 $\frac{1}{4\pi\epsilon_0} = 1.675 \times 10^{-27} \text{ kg}$
प्रोटॉन का द्रव्यमान $= 1.673 \times 10^{-27} \text{ kg}$
आवोगाद्रो संख्या $= 6.023 \times 10^{23} \text{ y}$ ित ग्राम मोल बोल्ट्जमान नियतांक $= 1.38 \times 10^{-23} \text{ JK}^{-1}$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Sections** A, B, C, D and E.
- (iii) In **Section** A Questions no. 1 to 16 are Multiple Choice type questions. Each question carries 1 mark.
- (iv) In **Section B** Questions no. 17 to 21 are Very Short Answer type questions. Each question carries 2 marks.
- (v) In **Section C** Questions no. **22** to **28** are Short Answer type questions. Each question carries **3** marks.
- (vi) In **Section D** Questions no. **29** and **30** are case study-based questions. Each question carries **4** marks.
- (vii) In **Section E** Questions no. **31** to **33** are Long Answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculators is **not** allowed.

You may use the following values of physical constants wherever necessary:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron =
$$1.675 \times 10^{-27}$$
 kg

Mass of proton =
$$1.673 \times 10^{-27}$$
 kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant =
$$1.38 \times 10^{-23}$$
 JK⁻¹

खण्ड क

1.	ाकसा म	।।ध्यम का आपाक्ष	क चुम्ब	भशालता ७.७७५	ह । इस ग	माध्यम का चुम्बक	ગય પ્રવૃ	।त ह :	
	(A)	0.925	(B)	-0.925	(C)	1.075	(D)	- 1.075	
2.	क्षेत्रफल	A और 4A के व	दो वृत्ताक	जर पाशों से क्रम श	r: 2I अं	ौर I की धाराएँ प्र	वाहित	हो रही हैं। इन	के
	केन्द्रों प	र चुम्बकीय क्षेत्रों व	का अनुप	ात होगा :					
	(A)	3:1	(B)	4:1	(C)	1:1	(D)	1:2	
3.	त्रिज्या]	R के किसी चालव	क्र गोले व	क्रो Q आवेश दिय	ा गया है	। तीन बिन्दुओं 🛭	А, В 🤄	और C पर विच	πर
	कीजिए	— बिन्दु A गोले	के केन्द्र	पर, B गोले के वे	त्न्द्र से I	२/2 दूरी पर तथा (C गोले	के पृष्ठ पर स्थि	ात
	है। इन	बिन्दुओं पर विद्युत	ा विभव इ	इस प्रकार हैं कि :					
	(A)	$V_A = V_B = V_B$	C		(B)	$V_A = V_B \neq V$	C C		
	(C)	$V_A \neq V_B \neq V$	C		(D)	$V_A \neq V_B = V_B$	$^{\prime}\mathrm{C}$		
4.	जब कि	सी समान्तर पट्टि	का संधा	रित्र की पट्टिकाओं	ों के बी	च पृथकन 8 cm	1 है त	ब उसकी धारि	ता
	10 μF	है। यदि पट्टिकाअ	ों के बीच	व पृथकन को आध	ा कर दि	या जाए, तो धारि	ता हो ज	गएगी :	
	(A)	10 μF	(B	3) 15 μF	(C)	20 μF	(D)	40 μF	
5.	आइसो	टोन वे न्यूक्लाइड	हैं जिनमें	:					
	(A)	न्यूट्रॉनों की संख्य	ा समान	परन्तु प्रोटॉनों की	संख्या १	भेन्न होती है			
	(B)	प्रोटॉनों की संख्य	ा समान	परन्तु न्यूट्रॉनों की	प्तंख्या १	भेन्न होती है			
	(C)	प्रोटॉनों की संख्य	ा समान	तथा न्यूट्रॉनों की स	ांख्या भी	समान होती है			
	(D)	प्रोटॉनों की संख्य	ा भिन्न त	नथा न्यूट्रॉनों की सं	ख्या भी	भिन्न होती है			
6.	किसी वि	वेद्युत-चुम्बकीय त	रंग के चृ	म्बकीय क्षेत्र का नि	भेरूपण I	$B_{\mathbf{r}} = B_0 \sin(\mathbf{k})$	y – ωt) के रूप में कि	या
		•	Ü	रंग के संचरण की 1		11 0			
	(A)	$+z$ अक्ष, $\frac{2\pi}{v}$			(B)	$-z$ अक्ष, $\frac{2\pi}{T}$			
	(C)	$+ y$ अक्ष, $\frac{2\pi}{\lambda}$			(D)	$-y$ अक्ष, $\frac{\lambda}{2\pi}$			
	(0)	' y σιαι, λ			(D)	2π			

SECTION A

				SEC.		T.4	4 L				
1.	The	relative	magnetic	permeability	of	a	medium	is	0.075.	Its	magnetic
	susc	eptibility	will be:								

(A) 0.925 (B) -0.925

(C) 1.075

(D) -1.075

Two circular loops of areas A and 4A carry currents 2I and I respectively. The 2. magnetic fields at their centres will be in the ratio of:

(A) 3:1 (B) 4:1 (C) 1:1

(D) 1:2

3. A conducting sphere of radius R is given a charge Q. Consider three points A, B and C — A at the centre, B at a distance R/2 from the centre and C on the surface of the sphere. The electric potentials at these points are such that:

(A) $V_A = V_B = V_C$

(B) $V_A = V_B \neq V_C$

(C) $V_{\Delta} \neq V_{R} \neq V_{C}$

(D) $V_{\Delta} \neq V_{R} = V_{C}$

4. The capacitance of a parallel plate capacitor is 10 µF when the distance between its plates is 8 cm. If the distance between the plates is halved, the capacitance will become:

(A) 10 μF (B) $15 \,\mu\text{F}$ (C) $20 \,\mu\text{F}$

(D) $40 \, \mu F$

5. Isotones are nuclides having:

> same number of neutrons but different number of protons (A)

> (B) same number of protons but different number of neutrons

same number of protons and also same number of neutrons (C)

(D) different number of protons and also different number of neutrons

6. The magnetic field of an electromagnetic wave is represented as

 $B_x = B_0 \sin (ky - \omega t)$. It means that the wave propagation direction and wave vector k are respectively:

(A) + z axis, $\frac{2\pi}{y}$

(B) -z axis, $\frac{2\pi}{T}$

(C) + y axis, $\frac{2\pi}{\lambda}$

(D) - y axis, $\frac{\lambda}{2\pi}$

7.	प्रतिरोध	5 Ω तथा स्व-प्रेरकत्व 25 mH का कोई	प्रेरक 2	$200~{ m rad}~{ m s}^{-1}$ कोणीय आवृत्ति के किसी
	ac स्रोत	से संयोजित है। वोल्टता और धारा के बीच व	फ्ला क	जोण है :
	(A)	30°	(B)	45°
	(C)	60°	(D)	90°
8.	ऐल्फ़ा व	फण प्रकीर्णन प्रयोग के लिए निम्नलिखित में से	कौन-र	सा कथन सही है ?
	(A)	प्रकीर्णन कोण $\theta \approx 0$ के लिए, संघट्ट प्राचल व	क्रम हो	ता है ।
	(B)	प्रकीर्णन कोण $\theta \simeq \pi$ के लिए, संघट्ट प्राचल	अधिक	होता है।
	(C)	प्रत्यक्ष (सम्मुख) संघट्ट करने वाले ऐल्फ़ा कर्ण	ों की स	गंख्या कम होती है।
	(D)	यह प्रयोग लक्ष्य परमाणु के साइज़ की ऊपरी	सीमा व	का आकलन प्रदान करता है।
9.	बोर मॉड	इल के अनुसार हाइड्रोजन परमाणु की आयनन	ऊर्जा ह	होती है :
	(A)	− 3·4 eV	(B)	3·4 eV
	(C)	− 13·6 eV	(D)	13·6 eV
10.	कोई बि	न्दुकित बिम्ब वायु में दो माध्यमों, वायु और	काँच व	को पृथक् करने वाली वक्रता त्रिज्या R के
	उत्तल ग	ोलीय पृष्ठ के मुख्य अक्ष पर 4R दूरी पर स्थित	है। जै	ौसे-जैसे बिम्ब इस पृष्ठ की ओर गति करता
	है, इसक	ज प्रतिबिम्ब :		
	(A)	सदैव वास्तविक बनता है		
	(B)	सदैव आभासी बनता है		
	(C)	पहले आभासी और फिर वास्तविक बनता है		
	(D)	पहले वास्तविक और फिर आभासी बनता है		
11.	पश्च दि	शेक बायसन में किसी p-n संधि डायोड के वि	लेए नि	म्नलिखित में से कौन-सा कथन सही नहीं
	है ?			
	(A)	धारा अनुप्रयुक्त वोल्टता पर लगभग निर्भर नह	ीं करर्त	ग ी है ।
	(B)	होल p-फलक से n-फलक की ओर प्रवाहित	होते हैं	51
	(C)	हासी क्षेत्र में विद्युत-क्षेत्र में वृद्धि हो जाती है।		
	(D)	संधि के n-फलक को बैटरी के धनात्मक	टर्मिनल	न तथा p-फलक को बैटरी के ऋणात्मक
		टर्मिनल से संयोजित किया जाता है।		

55/S/2

55/S/	2		7				P.T.O.
		terminal of the batt	tery.				
	(D)	n-side of the junc	ction is connected	to +	ve te	erminal and p-side to	-ve
	(C)	Electric field in the	e depletion region in	ıcrea	ses.		
	(B)	Holes flow from p-	•		-	-	
	(A)	The current is almo	ost independent of t	he ap	plied	voltage.	
	revers	se bias ?					
11.	Whic	h of the following	statements is <i>not</i>	true	for a	p-n junction diode u	nder
	(D)	first real and then v	rirtual				
	(C)	first virtual and the	n real				
	(B)	always virtual					
	(A)	always real					
	•	e object is moved to	•	•	•		,1uos.
10,	-	-				wo mediums, air and g	
10.	A noi	int object is placed in	air at a distance of	· AP	on the	e principal axis of a co	wex
	(C)	− 13·6 eV	(D)	13·6 e	eV	
	(A)	- 3·4 eV	(B)	3·4 e\	V	
9.	The id	onisation energy of the	he hydrogen atom,	in Bo	ohr mo	odel, is:	
•							
	(D)	atom.	ovides an estimate	or ui	e uppe	er limit to the size of to	ugei
	(C)	_	_			on collision is small.	raat
	(B)	For angle of scatter		•		•	
	(A)	For angle of scatter		•			
	•	riment?	min a O a O tha increa	at ===		ton is small	
8.		_	g statements is co	orrec	t ior	alpha particle scatte	ering
0	XX71. * - :	1			4 C-	-1-1 4'-144	•
	(C)	60°	(2	D)	90°		
	(A)	30°		B)	45°		
		he current is :	·		•		
	ac soi	urce of angular frequ	uency 200 rad s^{-1} .	The	phase	angle between the vol	ltage
/ .	All III	iductor of resistance	3 22 and sen-made	ranc	e 23 i	inn is connected acros	ss an

- 12. किसी गैल्वेनोमीटर की धारा सुग्राहिता निम्नलिखित में से किस एक पर निर्भर *नहीं* करती है ?
 - (A) चुम्बकीय क्षेत्र जिसमें कुण्डली निलंबित है
 - (B) कुण्डली में प्रवाहित धारा
 - (C) कमानी का ऐंठन नियतांक
 - (D) क्ण्डली का क्षेत्रफल

प्रश्न संख्या 13 से 16 अभिकथन (A) और कारण (R) प्रकार के प्रश्न हैं। दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) और कारण (R) दोनों ग़लत हैं।
- 13. अभिकथन (A): यद्यपि गॉगल (धूप के चश्मे) लेंसों के पृष्ठ वक्रित होते हैं, परन्तु उनमें कोई क्षमता नहीं होती है।
 - कारण (R): गॉगलों के प्रकरण में दोनों वक्रित पृष्ठ एक ही ओर वक्रित होते हैं और इनकी वक्रता त्रिज्या समान होती है।
- 14. अभिकथन (A): सूर्य में ऊर्जा जनन के लिए नाभिकीय विखण्डन अभिक्रियाएँ उत्तरदायी होती हैं।
 कारण (R): नाभिकीय विखण्डन अभिक्रियाओं में हल्के नाभिक परस्पर मिलकर संलियत होते

हैं।

- 15. अभिकथन (A): किसी चालक तार के किसी बिन्दु पर धारा घनत्व (\overrightarrow{J}) उस बिन्दु पर विद्युत-क्षेत्र (\overrightarrow{E}) की दिशा में होती है।
 - कारण (R): चालक तार ओम के नियम का पालन करता है।

- **12.** The current sensitivity of a galvanometer does *not* depend on the :
 - (A) magnetic field in which the coil is suspended.
 - (B) current flowing in the coil.
 - (C) torsional constant of the spring.
 - (D) area of the coil.

Questions number 13 to 16 are Assertion (A) and Reason (R) type questions. Two statements are given — one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Both Assertion (A) and Reason (R) are false.
- **13.** Assertion (A): Although the surfaces of a goggle lens are curved, it does not have any power.
 - Reason (R): In case of goggles, both the curved surfaces are curved on the same side and have equal radii of curvature.
- **14.** Assertion (A): Nuclear fission reactions are responsible for energy generation in the Sun.
 - Reason (R): Light nuclei fuse together in the nuclear fission reactions.
- 15. Assertion (A): The current density (\overrightarrow{J}) at a point in a conducting wire is in the direction of electric field (\overrightarrow{E}) at that point.
 - Reason (R): A conducting wire obeys Ohm's law.

16.	अभिकथन (A) :	जब कोई धारावाही कुण्डली किसी त्रिज्य चुम्बकीय क्षेत्र में निलंबित होती है तब उस पर कार्यरत बल-आघूर्ण अधिकतम होता है।	
	कारण (R) :	बल-आघूर्ण की प्रवृत्ति कुण्डली को उसके अक्ष पर घूर्णन कराने की होती है।	
		खण्ड ख	
17.	बाह्य प्रा	के बाह्य प्रतिरोध के सिरों से संयोजित कोई सेल 0.25 A धारा की आपूर्ति कर रहा है। तेरोध में 4 Ω की वृद्धि करने पर धारा घटकर 0.2 A हो जाती है। सेल का गा. बल (emf), तथा (ii) आन्तरिक प्रतिरोध ज्ञात कीजिए। अथवा	2
		भौर 4 µC के दो बिन्दु आवेश x-y तल में (0·3 m, 0) तथा (0, 0.3 m) पर वायु में हैं । मूल-बिन्दु (0, 0) पर उत्पन्न नेट विद्युत-क्षेत्र का परिमाण और दिशा ज्ञात ।	2
18.		वुम्बकीकरण और चुम्बकीय प्रवृत्ति के बीच अन्तर स्पष्ट कीजिए। अनुचुम्बकीय और प्रार्थों की चुम्बकीय प्रवृत्ति के विषय में अपने विचार लिखिए।	2
19.	_	द्रान्त लिखिए। इसका उपयोग करके किसी सघन माध्यम से विरल माध्यम में गमन ल तरंग के गमन पथ का चित्र विस्तार से दर्शाइए।	2
20.	जाने पर वह (a) और n-प्रकार के	ह्नव्यी) परमाणुओं के नाम लिखिए जिनके द्वारा किसी नैज अर्धचालक को मादित किए p-प्रकार तथा (b) n-प्रकार का अर्धचालक बन जाता है। T > 0 K ताप पर p-प्रकार अर्धचालकों के ऊर्जा बैण्ड आरेख खींचिए। इस आरेख पर दाता ऊर्जा स्तर तथा अंकित कीजिए और इनका संबंधित बैण्डों से ऊर्जा अन्तर को भी दर्शाइए।	2
21.	(अपवर्तनांक) क	प्रकाश स्रोत किसी बाल्टी की तली, जिसमें 10 cm ऊँचाई तक $\mu = 1.25$ । कोई द्रव भरा है, पर रखा है। परिकलित कीजिए : । अन्तरापृष्ठ के लिए क्रांतिक कोण	

(b) द्रव के पृष्ठ से निर्गत प्रकाश स्रोत द्वारा बनाए गए वृत्ताकार चमकीले भाग की त्रिज्या

2

- **16.** Assertion (A): The torque acting on a current carrying coil is maximum when it is suspended in a radial magnetic field.
 - *Reason (R)*: The torque tends to rotate the coil on its own axis.

SECTION B

17. (a) A cell is connected across an external resistance 12 Ω and supplies 0.25 A current. When the external resistance is increased by 4 Ω , the current reduces to 0.2 A. Calculate (i) the emf, and (ii) the internal resistance, of the cell.

OR

(b) Two point charges of 3 μ C and 4 μ C are kept in air at (0·3 m, 0) and (0, 0.3 m) in x-y plane. Find the magnitude and direction of the net electric field produced at the origin (0, 0).

18. Differentiate between magnetisation and the susceptibility of a material. What can you say about the susceptibility of paramagnetic and diamagnetic materials?

- 19. State Huygens principle. Using it draw a diagram showing the details of passage of a plane wave from a denser into a rarer medium.
- 20. Name the impurity atoms which are doped in an intrinsic semiconductor to convert it into (a) p-type, and (b) n-type semiconductor. Draw energy band diagrams of p-type and n-type semiconductors at temperature T > 0 K. Mark the donor and acceptor energy levels, showing the energy difference from the respective bands.
- 21. A point light source rests on the bottom of a bucket filled with a liquid of refractive index $\mu = 1.25$ up to height of 10 cm. Calculate:
 - (a) the critical angle for liquid-air interface
 - (b) radius of circular light patch formed on the surface by light emerging from the source.

55/S/2 11 P.T.O.

2

2

2

2

2

खण्ड ग

22. द्रव्यमान m और आवेश q का कोई कण वेग \overrightarrow{v} से किसी चुम्बकीय क्षेत्र \overrightarrow{B} में गितमान है। कारण सिंहत इस कण के प्रक्षेप पथ की उन स्थितियों की चर्चा कीजिए जब \overrightarrow{v} और \overrightarrow{B} के बीच का कोण है:

3

- (a) 0°
- (b) 90°
- (c) 120°
- 23. (a) कोई प्रकाश किरण किसी ऐसे पृष्ठ पर आपतन करती है जो वायु को अपवर्तनांक μ_1 के सघन माध्यम A से पृथक् करती है। इसके पश्चात यह किसी अन्य माध्यम B जिसका अपवर्तनांक μ_2 है के समान्तर पृष्ठ पर उतने ही कोण पर आपतन करती है। यदि इन दोनों माध्यमों में अपवर्तन कोण क्रमश: 30° और 35° हैं, तो इन दोनों माध्यमों (A और B) में से प्रकाश किसमें अधिक तीव्र गित से गमन करेगा और क्यों ?
 - (b) यंग के द्विझिरी प्रयोग में व्यतिकरण करती दो तरंगों में प्रत्येक की तीव्रता I_0 है। परदे के जिस बिन्दु पर व्यतिकरण करती हुई इन तरंगों के बीच पथान्तर (i) $\frac{\lambda}{2}$ तथा (ii) $\frac{\lambda}{3}$ है, वहाँ तीव्रता ज्ञात कीजिए।

3

- 24. प्रकाश-विद्युत प्रभाव के प्रयोग में नीचे दिए गए विचरण दर्शाइए :
 - (a) किसी दिए गए पृष्ठ तथा आपितत विकिरणों की विभिन्न तीव्रताओं के लिए संग्राही पिट्टका विभव के साथ प्रकाश-विद्युत धारा का विचरण। क्या ये वक्र किसी बिन्दु पर मिलते हैं ? यदि हाँ, तो क्यों ?
 - (b) आवृत्ति और पट्टिका विभव को स्थिर रखते हुए किसी पृष्ठ पर आपतित विकिरणों की तीव्रता के साथ प्रकाश-विद्युत धारा का विचरण।

3

SECTION C

22. A particle of mass m and charge q is moving in a magnetic field \overrightarrow{B} with a velocity \overrightarrow{v} . Discuss, giving reasons, the shape of its trajectory when the angle between \overrightarrow{v} and \overrightarrow{B} is:

3

- (a) 0°
- (b) 90°
- (c) 120°
- A ray of light is incident on a surface separating air from a denser medium A of refractive index μ_1 . It is then made incident on the parallel surface of another medium B of refractive index μ_2 at the same angle of incidence. If the angle of refraction in the two media are 30° and 35° respectively, then in which one of the two media (A or B) will light travel faster and why?
 - (b) The intensity of the two interfering waves in Young's double slit experiment is I_0 each. Find the intensity at a point on the screen where path difference between the interfering waves is (i) $\frac{\lambda}{2}$, and (ii) $\frac{\lambda}{3}$.
- 24. In photoelectric effect experiment, show the variation of
 - (a) photocurrent with collector plate potential for a given surface for different intensities of incident radiation. Do the curves meet at any point? If so, why?
 - (b) photocurrent with intensity of radiation incident on a surface keeping the frequency and plate potential fixed.

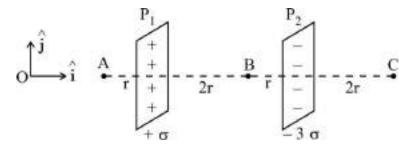
3

25. $10~\mu\text{C}$ और $20~\mu\text{C}$ के दो बिन्दु आवेश $E = \frac{A}{r^2}$ विद्युत-क्षेत्र के प्रदेश में बिन्दुओं (-4~cm,~0,~0) तथा (5~cm,~0,~0) पर स्थित हैं, जहाँ $A = 2 \times 10^6~\text{NC}^{-1}~\text{m}^2$ तथा \overrightarrow{r} विचारणीय बिन्दु पर स्थित सदिश है। इस निकाय की स्थिर-वैद्युत स्थितिज ऊर्जा परिकलित कीजिए।

3

3

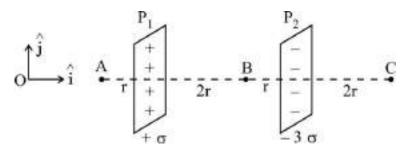
3


3

3

- 26. 200 V dc स्रोत से संयोजित किसी प्रेरक से 1 A धारा प्रवाहित होती है। जब इस चालक को 200 V, 50 Hz स्रोत से संयोजित करते हैं, तो केवल 0.5 A धारा प्रवाहित होती है। प्रेरक का स्व-प्रेरकत्व परिकलित कीजिए।
- 27. समान त्रिज्या R तथा समान फेरों की संख्या N की दो वृत्ताकार कुण्डलियाँ एक दूसरे से 2√3 R दूरी पर समाक्ष स्थित हैं तथा इनसे समान धारा I समान दिशा में प्रवाहित हो रही है। इन दोनों कुण्डलियों के केन्द्रों को मिलाने वाली रेखा के मध्य-बिन्दु पर नेट चुम्बकीय क्षेत्र का परिमाण और दिशा ज्ञात कीजिए।
- 28. (a) किसी चालक तार AB, जिसकी त्रिज्या उसके एक सिरे A से दूसरे सिरे B तक एकसमान रूप से घट रही है, किसी बैटरी के सिरों से संयोजित है। इस तार में सिरे A से सिरे B तक (i) विद्युत-क्षेत्र, (ii) धारा घनत्व, तथा (iii) इलेक्ट्रॉनों की गतिशीलता किस प्रकार परिवर्तित होगी? प्रत्येक प्रकरण में अपने उत्तर की पृष्टि कीजिए।

अथवा


(b) आरेख में दर्शाए अनुसार दो बड़े समतल चादर P_1 और P_2 , जिनके आवेश घनत्व क्रमश: $+ \sigma$ और $- 3 \sigma$ हैं, एक दूसरे के समान्तर स्थित हैं । बिन्दुओं A, B और C पर नेट विद्युत-क्षेत्र (\overrightarrow{E}) ज्ञात कीजिए।

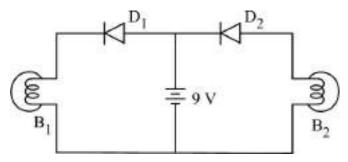
- Two point charges of 10 μ C and 20 μ C are located at points (– 4 cm, 0, 0) and (5 cm, 0, 0) respectively, in a region with electric field $E = \frac{A}{r^2}$, where $A = 2 \times 10^6 \text{ NC}^{-1} \text{ m}^2$ and \overrightarrow{r} is the position vector of the point under consideration. Calculate the electrostatic potential energy of the system.
- 26. A current of 1 A flows through an inductor connected to a 200 V dc source. When it is connected to 200 V, 50 Hz source, only 0.5 A current flows. Calculate the self-inductance of the inductor.
- 27. Two circular coils of radius R each and having equal number of turns N, carry equal currents I in the same direction. They are placed coaxially at a distance $2\sqrt{3}$ R. Find the magnitude and direction of the net magnetic field produced at the midpoint of the line joining their centres.
- 28. (a) The radius of a conducting wire AB uniformly decreases from its one end A to another end B. It is connected across a battery. How will (i) electric field, (ii) current density, and (iii) mobility of electrons change from end A to end B? Justify your answer in each case.

OR

(b) Two large plane sheets P_1 and P_2 having charge densities $+ \sigma$ and $- 3 \sigma$ respectively are arranged parallel to each other as shown in the figure. Find the net electric field (\overrightarrow{E}) at points A, B and C.

3

3

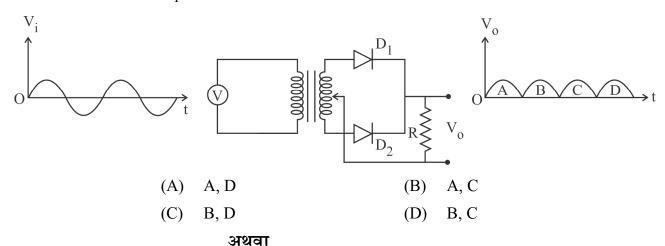

3

3

खण्ड घ

प्रश्न संख्या 29 तथा 30 केस अध्ययन-आधारित प्रश्न हैं। निम्नलिखित अनुच्छेदों को पढ़ कर नीचे दिए गए प्रश्नों के उत्तर दीजिए।

- 29. ac को dc में परिवर्तित करने की प्रक्रिया को दिष्टकरण कहते हैं तथा इस प्रक्रिया को करने वाली युक्ति को दिष्टकारी कहते हैं। जब किसी संधि डायोड पर कोई ac सिग्नल धनात्मक अर्धचक्र पर लगता है तो वह डायोड अग्रदिशिक बायिसत हो जाता है तथा उससे धारा प्रवाहित होती है। ऋणात्मक अर्धचक्र की अविध में, डायोड पश्चदिशिक बायिसत हो जाता है और उससे कोई धारा प्रवाहित नहीं होती है। इस प्रकार ac सिग्नल का दिष्टकरण हो जाता है। p-n संधि डायोडों का उपयोग अर्ध-तरंग दिष्टकारी और पूर्ण-तरंग दिष्टकारी के रूप में किया जा सकता है।
 - (i) दिए गए परिपथ में कौन-सा/से बल्ब चमकेगा/चमकेंगे ?

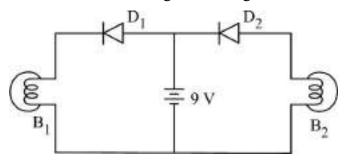

(A) केवल B₁

- (B) केवल B₂
- (C) B_1 और B_2 दोनों
- (D) $\pi \operatorname{rd} B_1 \operatorname{3} \pi \operatorname{r} \pi \operatorname{rd} B_2$

1

1

(ii) (a) आरेख में पूर्ण-तरंग दिष्टकारी परिपथ दर्शाया गया है। निर्गत तरंगरूप में संधि डायोड D_1 का योगदान है :

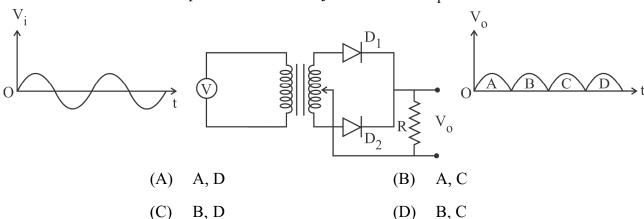


55/S/2

SECTION D

Questions number 29 and 30 are case study-based questions. Read the following paragraphs and answer the questions that follow.

- 29. The process of converting ac into dc is called rectification and the device used is called a rectifier. When ac signal is fed to a junction diode during positive half cycle, the diode is forward biased and current flows through it. During the negative half cycle, the diode is reverse biased and it does not conduct. Thus the ac signal is rectified. The p-n junction diodes can be used as half-wave and full-wave rectifiers.
 - (i) Which bulb/bulbs will glow in the given circuit?


(A) B₁ only

- (B) B₂ only
- (C) Both B_1 and B_2
- (D) Neither B₁ nor B₂

1

1

(ii) (a) A full-wave rectifier circuit is shown in the figure. The contribution in output waveform from junction diode D_1 is :

OR

	(b)	किसी	अर्ध-तरंग दिष्टकारी का निर्ग	त होता	है :		1
		(A)	बिना उर्मिका का एकदिशि	क	(B)	स्थायी और सतत	
		(C)	उर्मिका के साथ एकदिशिव	त	(D)	स्थायी और असतत	
(iii)	p-n सं	धे डायो	ाड में p-फलक पर और n-फ	लक पर	बहुसंख्य	ाक आवेश क्रमश: होते हैं :	1
	(A)	इलेक्ट्र	ऍान, इलेक्ट्रॉन		(B)	इलेक्ट्रॉन, होल	
	(C)	होल,	होल		(D)	होल, इलेक्ट्रॉन	
(iv)	यदि अ	र्ध-तरंग	दिष्टकारी की आवृत्ति 50 H	z है, तो	पूर्ण-तरंग	। दिष्टकारी की आवृत्ति होगी :	1
	(A)	25 H	Z		(B)	50 Hz	
	(C)	100]	Hz		(D)	200 Hz	
हैं, जो र निर्माण द्विध्रुव	प्रदिश रा करते हैं, अपने चा	शियाँ है जबकि रों ओर	ु । लघु दूरी द्वारा पृथकित दे कोई धारावाही पाश चुम्ब	ते समान कीय द्वि	और वि ध्रुव की	वेशेषता उनके द्विध्रुव आघूर्ण होते जातीय आवेश विद्युत द्विध्रुव का भाँति व्यवहार करता है। विद्युत वेद्युत-क्षेत्र में स्थित किए जाने पर	
(i)	+ q से	बना है,	, x-y तल में इस प्रकार व्यव	ास्थित वि	ू क्रेया गय	ारा पृथकित दो आवेशों – q और ा है कि इनके ऋणावेश मूल-बिन्दु पर स्थित हैं। इस निकाय का कुल	
	द्विध्रुव उ	आघूर्ण है	₹:				1
	(A)	– q d	$(\hat{i} + \hat{j})$	(B)	qd(i	$(\hat{j} + \hat{j})$	
	(C)	q d ($\hat{i} - \hat{j}$)	(D)	q d ()	$(\hat{i} - \hat{i})$	

55/S/2

30.

- (b) The output in a half-wave rectifier is:
 - (A) unidirectional without ripple (B) steady and continuous
 - (C) unidirectional with ripple (D) steady but discontinuous
- (iii) In a p-n junction diode, the majority charge carriers on p-side and on n-side are, respectively:
 - (A) electrons, electrons
- (B) electrons, holes

(C) holes, holes

- (D) holes, electrons
- (iv) If the frequency of the half-wave rectifier is 50 Hz, the frequency of full-wave rectifier is:
 - (A) 25 Hz

(B) 50 Hz

(C) 100 Hz

- (D) 200 Hz
- 30. Dipoles, whether electric or magnetic, are characterised by their dipole moments, which are vector quantities. Two equal and opposite charges separated by a small distance constitute an electric dipole, while a current carrying loop behaves as a magnetic dipole. Electric dipoles create electric fields around them. Electric dipoles experience a torque when placed in an external electric field.
 - (i) Two identical electric dipoles, each consisting of charges -q and +q separated by distance d, are arranged in x-y plane such that their negative charges lie at the origin O and positive charges lie at points (d, 0) and (0, d) respectively. The net dipole moment of the system is:

(A)
$$-qd(\hat{i}+\hat{j})$$

(B)
$$q d (\hat{i} + \hat{j})$$

(C)
$$qd(\hat{i} - \hat{j})$$

(D)
$$q d (\hat{j} - \hat{i})$$

1

1

1

- 2a दूरी से पृथिकत तथा -q और +q आवेशों के बने किसी द्विध्रुव के कारण दूरी (ii) r >> a) के (1) किसी बिन्दु जो उसके अक्ष पर स्थित है, तथा (2) किसी बिन्दु जो विषुवतीय तल पर स्थित है, पर विद्युत-क्षेत्र के परिमाण क्रमशः E_1 और E_2 हैं। तब $\left(\frac{E_1}{E_2}\right)$ है :
 - (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) 2

- (D) 4

1

1

1

- 5.0 × 10⁻⁸ Cm द्विध्रुव आघूर्ण का कोई विद्युत द्विध्रुव किसी ऐसे प्रदेश में रखा है जहाँ किसी (iii) दिए गए क्षण पर विद्युत-क्षेत्र का परिमाण $1.0 \times 10^3~{
 m N/C}$ है। इस क्षण पर विद्युत-क्षेत्र $\overrightarrow{{
 m E}}$ का द्विध्नुव आघूर्ण \overrightarrow{P} से झुकाव 30° है। इस क्षण द्विध्नुव पर कार्यरत बल-आघूर्ण का परिमाण है :
 - $2.5 \times 10^{-5} \text{ Nm}$ (A)
- (B) $5.0 \times 10^{-5} \text{ Nm}$
- (C) $1.0 \times 10^{-4} \text{ Nm}$
- (D) $2.0 \times 10^{-6} \text{ Nm}$
- हाइड्रोजन परमाणु में कोई इलेक्ट्रॉन किसी प्रोटॉन के चारों ओर चाल v से त्रिज्या r (iv) (a) की वृत्ताकार कक्षा में परिक्रमा कर रहा है। इस इलेक्ट्रॉन के चुम्बकीय द्विध्रुव आघूर्ण का परिमाण है :
 - (A) 4 evr

(B) 2 evr

(C) $\frac{1}{2}$ evr

(D) $\frac{1}{\cdot}$ evr

अथवा

- भुजा 5.0 cm के वर्गाकार पाश से 2.0 A की धारा प्रवाहित हो रही है। इस पाश से (b) संबद्ध चुम्बकीय द्विध्रुव आधूर्ण का परिमाण है :
 - (A) $1.0 \times 10^{-3} \text{ Am}^2$
- (B) $5.0 \times 10^{-3} \text{ Am}^2$
- (C) $1.0 \times 10^{-2} \text{ Am}^2$
- (D) $5.0 \times 10^{-2} \text{ Am}^2$

55/S/2

- E₁ and E₂ are magnitudes of electric field due to a dipole, consisting of (ii) charges –q and +q separated by distance 2a, at points r (>> a) (1) on its axis, and (2) on equatorial plane, respectively. Then $\left(\frac{E_1}{E_2}\right)$ is :
 - - $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) 2
- (D) 4

1

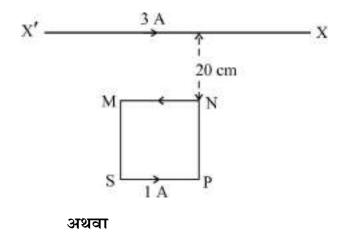
1

1

- An electric dipole of dipole moment 5.0×10^{-8} Cm is placed in a region (iii) where an electric field of magnitude 1.0×10^3 N/C acts at a given instant. At that instant the electric field \overrightarrow{E} is inclined at an angle of 30° to dipole moment \overrightarrow{P} . The magnitude of torque acting on the dipole, at that instant is:
 - $2.5 \times 10^{-5} \text{ Nm}$ (A)
- (B) $5.0 \times 10^{-5} \text{ Nm}$
- $1.0 \times 10^{-4} \text{ Nm}$ (C)
- (D) $2.0 \times 10^{-6} \text{ Nm}$
- An electron is revolving with speed v around the proton in a (iv) (a) hydrogen atom, in a circular orbit of radius r. The magnitude of magnetic dipole moment of the electron is:
 - (A) 4 evr

(B) 2 evr

(C) $\frac{1}{2}$ evr

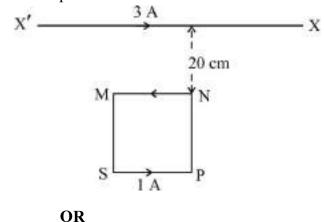

(D) $\frac{1}{4}$ evr

OR

- A square loop of side 5.0 cm carries a current of 2.0 A. The (b) magnitude of magnetic dipole moment associated with the loop is:
 - (A) $1.0 \times 10^{-3} \text{ Am}^2$
- (B) $5.0 \times 10^{-3} \text{ Am}^2$
- (C) $1.0 \times 10^{-2} \text{ Am}^2$
- (D) $5.0 \times 10^{-2} \text{ Am}^2$

खण्ड ङ

- 31. (a) (i) नामांकित आरेख की सहायता से किसी ac जिनत्र की कार्यविधि की व्याख्या कीजिए। किसी क्षण 't' पर प्रेरित वि.वा.बल (emf) के लिए व्यंजक प्राप्त कीजिए।
 - (ii) कोई लम्बा, सीधा क्षैतिज तार X'X स्थिर रखा है तथा इससे 3.0 A धारा प्रवाहित हो रही है। आरेख में दर्शाए अनुसार इस तार X'X के पास कोई वर्गाकार पाश MNPS, जिसकी भुजा की लम्बाई 10 cm है तथा जिससे 1.0 A धारा प्रवाहित हो रही है, रखा है। इस तार के कारण पाश पर लगने वाले नेट चुम्बकीय बल का परिमाण और दिशा ज्ञात कीजिए।



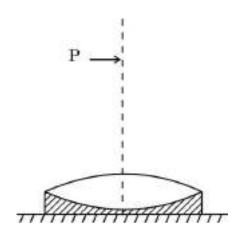
- (b) (i) फैराडे के विद्युत-चुम्बकीय प्रेरण के नियमों का उल्लेख कीजिए तथा लेंज़ के नियम का उपयोग लिखिए। किसी कुण्डली के स्व-प्रेरकत्व के लिए उसकी ज्यामितीय संरचना तथा माध्यम की चुम्बकशीलता के पदों में व्यंजक प्राप्त कीजिए।
 - (ii) किसी 220~V की परिवर्ती आवृत्ति की ac आपूर्ति के साथ श्रेणी में एक $20~\Omega$ का प्रतिरोध, $80~\mu F$ का संधारित्र तथा 50~mH का प्रेरक संयोजित हैं। जब आपूर्ति की आवृत्ति इस परिपथ की मूल (प्राकृतिक) आवृत्ति के बराबर है, तो परिकलित कीजिए:
 - (1) आपूर्ति की कोणीय आवृत्ति
 - (2) परिपथ की प्रतिबाधा

5

SECTION E

- 31. (a) (i) With the help of a labelled diagram, explain the working of an ac generator. Obtain the expression for the emf induced at an instant 't'.
 - (ii) A long, straight horizontal wire X'X is held stationary and carries a current of 3.0 A. A square loop MNPS of side 10 cm, carrying a current of 1.0 A is kept near the wire X'X as shown in the figure. Find the magnitude and direction of the net magnetic force acting on the loop due to the wire.

- (b) State Faraday's law of electromagnetic induction and mention the utility of Lenz's law. Obtain an expression for self-inductance of a coil in terms of its geometry and permeability of the medium.
 - (ii) A resistance of $20~\Omega$, a capacitance of $80~\mu F$ and an inductor of 50~mH are connected in series. This combination is connected across a 220~V ac supply of variable frequency. When the frequency of supply equals the natural frequency of the circuit, calculate:
 - (1) angular frequency of supply
 - (2) impedance of the circuit

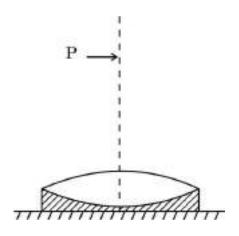

- 32. (a) (i) किसी खगोलीय दूरबीन के अभिदृश्यक तथा अभिनेत्र लेन्सों की अभिकल्पना करते समय किन दो मुख्य बातों को ध्यान में रखा जाता है ? किसी दूरबीन की आवर्धन क्षमता के लिए उस स्थिति में व्यंजक प्राप्त कीजिए जब अंतिम प्रतिबिम्ब अनन्त पर बनता है।
 - (ii) कोई प्रकाश किरण किसी समबाहु त्रिभुजाकार प्रिज़्म के एक फलक पर 45° के कोण पर आपतन करती है और प्रिज़्म से सममितत: गुज़र जाती है। परिकलित कीजिए:

5

- (1) प्रिज़्म द्वारा उत्पन्न विचलन कोण
- (2) प्रिज़्म के पदार्थ का अपवर्तनांक

अथवा

- (b) (i) एकल झिरी के विवर्तन पैटर्न के प्रेक्षण के लिए किसी सरल क्रियाकलाप का वर्णन कीजिए।
 - (ii) नीचे दिए गए आरेख में दर्शाए अनुसार कोई समोत्तल लेंस (अपवर्तनांक 1.50) किसी समतल दर्पण के फलक पर किसी द्रव की परत के सम्पर्क में रखा है। कोई छोटी सुई जिसकी नोक लेंस के मुख्य अक्ष पर है, अक्ष के अनुदिश ऊपर-नीचे गित कराकर इस प्रकार समायोजित की जाती है कि सुई की नोक का उल्टा प्रतिबिम्ब सुई की स्थित पर ही बने। लेंस से सुई की दूरी मापने पर 45.0 cm पाई जाती है। जब द्रव को हटाकर इसी प्रयोग को दुबारा किया जाता है, तो नई दूरी 30.0 cm पाई जाती है। द्रव का अपवर्तनांक ज्ञात कीजिए।


- 32. (a) What are the two main considerations for designing the objective and eyepiece lenses of an astronomical telescope? Obtain the expression for magnifying power of the telescope when the final image is formed at infinity.
 - (ii) A ray of light is incident at an angle of 45° at one face of an equilateral triangular prism and passes symmetrically through the prism. Calculate:

5

- (1) the angle of deviation produced by the prism
- (2) the refractive index of the material of the prism

OR

- (b) (i) Describe a simple activity to observe diffraction pattern due to a single slit.
 - (ii) The figure below shows an equiconvex lens (of refractive index 1.50) in contact with a liquid layer on top of a plane mirror. A small needle with its tip on the principal axis is moved along the axis until its inverted image is found at the position of the needle. The distance of the needle from the lens is measured to be 45.0 cm. When the liquid is removed and the experiment is repeated, the new distance is 30.0 cm. Find the refractive index of the liquid.

- 33. (a) (i) द्रव्य तरंगें किन्हें कहते हैं ? द्रव्यमान m तथा आवेश q के किसी कण को किसी विभवान्तर V द्वारा विराम से त्वरित किया गया है। इस कण से संबद्ध दे ब्रॉग्ली तरंगदैर्ध्य के लिए व्यंजक प्राप्त कीजिए।
 - (ii) 3.315 mW निर्गत शक्ति के किसी स्रोत द्वारा $5.0 \times 10^{14} \text{ Hz}$ आवृत्ति का एकवर्णी प्रकाश उत्पन्न किया गया है। परिकलित कीजिए :

- (1) इस प्रकाश पुन्ज में फ़ोटॉन की ऊर्जा
- (2) स्रोत द्वारा प्रति सेकण्ड उत्सर्जित फ़ोटॉनों की संख्या

अथवा

- (b) (i) बोर के अभिगृहीतों का उल्लेख कीजिए तथा हाइड्रोजन परमाणु के बोर के मॉडल में nवीं कक्षा के इलेक्ट्रॉन की ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए।
 - (ii) ${}^{12}_{6}$ C की प्रति न्यूक्लिऑन बंधन ऊर्जा का (MeV में) परिकलन कीजिए। 5

$$m \begin{pmatrix} 12 \\ 6 \end{pmatrix} = 12.000000 u$$

$$m \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1.008665 u$$

$$m \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1.007825 u$$

- 33. (a) (i) What are matter waves ? A particle of mass m and charge q is accelerated from rest through a potential difference V. Obtain an expression for de Broglie wavelength associated with the particle.
 - (ii) Monochromatic light of frequency 5.0×10^{14} Hz is produced by a source of power output 3.315 mW. Calculate :
 - (1) energy of the photon in the beam
 - (2) number of photons emitted per second by the source

OR

- (b) (i) State Bohr's postulates and derive an expression for the energy of electron in nth orbit in Bohr's model of hydrogen atom.
 - (ii) Calculate binding energy per nucleon (in MeV) of ${}^{12}_{6}$ C.

Given:

$$m\binom{12}{6}C = 12.000000 u$$

$$m\begin{pmatrix} 1\\0 n \end{pmatrix} = 1.008665 u$$

$$m \binom{1}{1}H = 1.007825 u$$

5

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024 SUBJECT NAME PHYSICS [PAPER CODE 55/S/2]

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the cost evaluation guidelines corefully.
_	the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
	be done according to one's own interpretation or any other consideration. Marking Scheme
	should be strictly adhered to and religiously followed. However, while evaluating, answers
	which are based on latest information or knowledge and/or are innovative, they may be
	assessed for their correctness otherwise and due marks be awarded to them. In class-
	X, while evaluating two competency-based questions, please try to understand given
	answer and even if reply is not from marking scheme but correct competency is
	enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers
	These are in the nature of Guidelines only and do not constitute the complete answer. The
	students can have their own expression and if the expression is correct, the due marks should
	be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator
	on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark ($$) wherever answer is correct. For wrong answer CROSS 'X" be
0	marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that
	answer is correct and no marks are awarded. This is most common mistake which
	evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks
10	should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks <u>0-70</u> (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

13	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past:-
	• Leaving answer or part thereof unassessed in an answer book.
	• Giving more marks for an answer than assigned to it.
	Wrong totaling of marks awarded on an answer.
	• Wrong transfer of marks from the inside pages of the answer book to the title page.
	• Wrong question wise totaling on the title page.
	Wrong totaling of marks of the two columns on the title page.
	Wrong grand total.
	Marks in words and figures not tallying/not same.
	Wrong transfer of marks from the answer book to online award list.
	• Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be
	marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,
	it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for
	spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

	अंक योजना: भौतिकी (042)		
	कोड: 55/S/2		
प्र.स	मूल्यांकन बिंदु/अपेक्षित उत्तर	अंक	कुल अंक
	(खंड अ)		
1.	(B) -0.925	1	1
2.	(B) 4:1	1	1
3.	(A) $V_A = V_B = V_C$	1	1
4.	(C) 20μF	1	1
5.	(A)न्यूट्रॉनों की संख्या समान परन्तु प्रोटॉनों की संख्या भिन्न होती है।	1	1
6.	(C) +y अक्ष, $\frac{2\pi}{\lambda}$	1	1
7.	(B) 45 ⁰	1	1
8.	(C)प्रत्यक्ष (सम्मुख) संघट्ट करने वाले ऐल्फा कणों की संख्या कम होती है।	1	1
9.	(D) 13.6 e V	1	1
10.	(D) पहले वास्तविक और फिर आभासी बनता है	1	1
11.	(B) होल p-फलक से n-फलक की ओर प्रवाहित होते हैं।	1	1
12.	(B) कुंडली में प्रवाहित धारा	1	1
13.	(A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण अभिकथन (A) की सही व्याख्या करता है।	1	1
14.	(D) अभिकथन (A) और कारण (R) दोनो गलत हैं	1	1
15.	(B) अभिकथन (A) और कारण (R) दोनों सही हैं परन्तु कारण (R) अभिकथन (A) की सही व्याख्या नहीं करता है	1	1
16.	(B) अभिकथन (A) और कारण (R) दोनों सही हैं परन्तु कारण R अभिकथन (A) की सही व्याख्या नहीं करता है।	1	1
	SECTION B		
17.	(i) सेल के emf का परिकलन I (ii) सेल के आंतरिक प्रतिरोध का परिकलन $I = \frac{\varepsilon}{R+r}$		
	$R+r$ $0.25 = \frac{\varepsilon}{12+r} \qquad(1)$	1/2	
	$0.2 = \frac{\varepsilon}{16 + r} \qquad(2)$	1/2	
	समीकरण $_{(1)}$ तथा $_{(2)}$ को हल करने पर		
	$r=4\Omega$	1/2	
	$\varepsilon = 4 \mathrm{V}$	1/2	
			2

	अथवा		
	विद्युत् क्षेत्र का परिमाण ज्ञात करना 1 ½		
	वियुत् क्षेत्र की दिशा ज्ञात करना		
	$\vec{E}_{1} = \frac{kq_{1}}{r_{1}^{2}}(-\hat{i}) = \frac{9 \times 10^{9} \times 3 \times 10^{-6}}{(0.3)^{2}}(-\hat{i}) = 3 \times 10^{5}(-\hat{i}) \text{ NC}^{-1}$	1/2	
	$\vec{E}_2 = \frac{kq_2}{r_2^2}(-\hat{j}) = \frac{9 \times 10^9 \times 4 \times 10^{-6}}{(0.3)^2}(-\hat{j}) = 4 \times 10^5(-\hat{j}) \text{ NC}^{-1}$ $\vec{E} = \vec{E}_1 + \vec{E}_2$	1/2	
	$E = \sqrt{E_1^2 + E_2^2}$ $E = 5 \times 10^5 \text{ NC}^{-1}$ $\tan \theta = \frac{4}{3}$	1/2	
	$\theta = an^{-1} \left(\frac{4}{3} \right)$ मूल बिंदु पर X अक्ष से झुकाव (तृतीय चतुर्थांश)	1/2	2
18.	चुंबकीकरण और चुंबकीय प्रवृत्ति के बीच आवृत्ति 1 अनुचुंबकीय और प्रतिचुम्ब्कीय प्रवृत्ति पर चर्चा ½+½		
	प्रति एकांक आयतन नेट चुंबकीय आघूर्ण कोचुंबकीय करण कहते हैं। वैकल्पिकउत्तर:- $\vec{M} = \frac{\vec{m}_{net}}{v}$	1/2	
	किसी माध्यम की चुंबकीय प्रवृत्ति की माप उस माध्यम की किसी बाह्य चुंबकीय क्षेत्र से व्यवहार करने की माप होता है।		
	वैकल्पिकउत्तर:- $\vec{M} = x\vec{H}$ $0 \& \varepsilon के बीच किसी अनुचुंबकीय पदार्थ की चुंबकीय प्रवृत्ति$	1/ ₂ 1/ ₂	
	वैकल्पिकउत्तर:- $0 < x < 1$ के बीच किसी प्रतिचुम्ब्कीय पदार्थ की चुंबकीय प्रवृत्ति $-1 \le x < o$	1/2	
			2

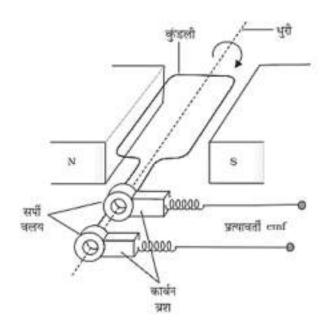
10			
19.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	हाङ्गेन्स के सिद्धांत का कथन 1 आरेख खींचना 1		
	• आरख खाचना		
	हाइगॅस के सिद्धांत के अनुसार, तरंगाग्र का प्रत्येक बिंदु एक द्वितीयक विक्षोभ का स्रोत		
	है और इन बिंदुओं से होने वाली तरंगिकाएँ तरंग की गति से सभी दिशाओं में फैलती		
	हैं। तरंगाग्र से निर्गमन होने वाली इन तरंगिकाओं को प्रायः द्वितीयक तरंगिकाओं के	1	
	नाम से जाना जाता है और यदि हम इन सभी गोलों पर एक उभयनिष्ठ स्पर्शक पृष्ठ	1	
	खींचें तो हमें किसी बाद के समय पर तरंगाग्र की नयी स्थिति प्राप्त हो जाती है।		
	आपतित तरंगाग्र		
	माध्यम ।		
	LI P B	1	
	17 /1 / m 1/2		
	माध्यम 2 🗚 🔭 С		
	the last		
	अपवर्तित तरंगाग्र		_
	v ₂ > v ₁		2
20.			
	निम्नलिखित अर्धचालकों में अपद्रव्यी परमाणु का नाम		
	(a) p- प्रकार ½		
	(b) n- प्रकार ½		
	ऊर्जा बैंड आरेख		
	p- प्रकार ½		
	n- प्रकार ½		
	a) प्रकार के अर्धचालकों का अपद्रव्यी प्रमाण (ग्रुप 13) त्रिसंयोजी परमाणु ग्राही अपद्रव्यी	1/2	
	परमाणु कहलाता है।	1/2	
	(b) n-प्रकार के अर्धचालकों का अपद्रव्यी परमाणु (ग्रुप 15 अथवा पंच संयोजी परमाणु)	, 2	
	दाता अपद्रव्यी परमाणु कहलाता है।		
<u> </u>	ુ		

21.	E_{c} E_{c	1/2 + 1/2	2
	(a) क्रांतिक कोण का परिकलन 1		
	(b) वृताकार चमकीले भाग की त्रिज्या का परिकलन 1		
	(a) $\sin i_c = \frac{1}{\mu}$	1/2	
	$\sin i_c = \frac{4}{5} \qquad (\mu = 1.25 = \frac{5}{4})$		
	$i_c = \sin^{-1}(\frac{4}{5})$	1/2	
	$or i_c = 53^{\circ}$ (b) $\sin i_c = \frac{r}{\sqrt{r^2 + h^2}}$	1/2	
	$\frac{r^{2}}{r^{2} + h^{2}} = \left(\frac{4}{5}\right)^{2}$ $25r^{2} = 16r^{2} + 16h^{2}$ $9r^{2} = 1600$ $r = \frac{40}{r}cm$	1/2	2
	SECTION C		2
22.			
	कारण देते हुए उस स्थित में प्रक्षेप पथ की आकृति खींचना जिसमे के $V \& B$ बीच का कोण (a) 0^0 $V_2 + V_2$ (b) 90^0 $V_2 + V_2$ (c) 120^0 $V_2 + V_2$ (a) हमे ज्ञात है कि $\vec{F} = q(\vec{\mathbf{v}} \times \vec{B})$ वैकल्पिक उतर - कण सरल रेखा में गित करता है $\vec{\mathbf{v}} \times \vec{B}$ के बीच कोण 0^0 है अतः $\vec{F} = 0$	1/2	

(b)	1/2	
$F, \vec{\mathrm{v}} \& \vec{B}$ दोनों के लंबवत है $ $	1/2	
(c) B D Products Produ	1/2	
वैकल्पिक उतर:- कण तृतीय पथ में गित करता है। $F = q v B Sin\theta$ $F = q v B Sin\theta$ चुंबकीय क्षेत्र के समान्तर वेग का घटक आवेश को वेग कि दिशा में गमन कि प्रवृत्ति प्रदान करता है जबिक चुंबकीय क्षेत्र के लंबवत वेग का घटक आवेश का वृतीय पथ के अनुदिश गमन कि प्रवृत्ति प्रदान करता है, फलस्वरूप आवेश सर्पिलाकार पथ में गमन करता है।	1/2	3
23. $(a) \qquad \text{माध्यम की पहचान करना} \qquad \frac{1}{2}$ $ \text{5 तर की पुष्टि} \qquad \frac{1}{2}$ $(a) (i) \text{पथांतर} = \frac{\lambda}{2} \text{के लिए तीव्रता ज्ञात करना} \qquad 1$ $(ii) \text{पथांतर} = \frac{\lambda}{3} \text{के लिए तीव्रता ज्ञात करना} \qquad 1$ $(a) \text{माध्यम B } \text{में प्रकाश तीव्र गित से गमन करता है।} $ $ \mu_1 = \frac{\sin i}{\sin r_1} $ $ \mu_2 = \frac{\sin i}{\sin r_2} $	1/2	3

$u \sin r \sin 35^0$		
$\therefore \frac{\mu_1}{\mu_2} = \frac{\sin r_2}{\sin r_1} = \frac{\sin 35^0}{\sin 30^0}$		
$\Rightarrow \frac{\mu_1}{\mu_2} = \frac{\mathbf{v}_2}{\mathbf{v}_1} > 1$ $\therefore \mathbf{v}_2 > \mathbf{v}_1$	1/2	
(b)		
$I = 4I_0 \cos^2 \frac{\phi}{2}$ (i) $\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{2} = \pi$	1/2	
$I = 4I_0(\cos\frac{\pi}{2})^2 = 0$	1/2	
(ii) $\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{3} = \frac{2\pi}{3}$	1/2	
$I = 4I_0(\cos\frac{\pi}{3})^2$	1/2	
$I=I_0$		3
(a) संग्राही पिट्टका के विभव के साथ प्रकाश धारा के विचरण को दर्शाना । व्याख्या । (b) आपितत विकिरणों की तीव्रता के साथ प्रकाश धारा के विचरण को दर्शाना । (a)	1	
(b) हाँ, ये वक्र निरोधी विभव पर मिलते हैं। किसी दिए गए पृष्ठ के लिए चूँिक निरोधी विभव पर फोटॉनों की ऊर्जा प्रकाश की तीव्रता पर निर्भर नहीं करती है। अतः निरोधी विभव पर प्रकाश धारा शून्य हो जाती	1/2	
है।		

	प्रकाश की तीव्रत	1	3
25.	निकाय की स्थिर वैद्युत स्थितिज ऊर्जा		
	$U = \frac{kq_1q_2}{r_{12}} + q_1V_1 + q_2V_2$ $\frac{kq_1q_2}{r_{12}} = \frac{9 \times 10^9 \times 10 \times 10^{-6} \times 20 \times 10^{-6}}{9 \times 10^{-2}} = 20J$	1 1/2	
	$q_1 V_1 = q_1 \frac{A}{r_1} = \frac{10 \times 10^{-6} \times 2 \times 10^6}{4 \times 10^{-2}} = 500$ J	1/2	
	$q_2V_2 = q_2 \frac{A}{r_2} = \frac{20 \times 10^{-6} \times 2 \times 10^6}{5 \times 10^{-2}} = 800$ J	1/2	
	U = (20 + 500 + 800) J $U = 1320 J$	1/2	3
26.	प्रेरक का स्वप्रेरकत्व परिकलित करना 3		
	प्रतिरोध (R) = $\frac{V}{I} = \frac{200}{1} = 200\Omega$	1/2	
		1/2	
	प्रतिबाधा $(Z) = \frac{V}{I} = \frac{200}{0.5} = 400\Omega$ $Z = \sqrt{R^2 + X_L^2}$ $(400)^2 = (200)^2 + \omega^2 L^2$	1/ ₂ 1/ ₂	
	हल करने पर $L = \frac{2\sqrt{3}}{\pi}H$ $L = \frac{2}{\sqrt{3}}H$	1	3


27.		
नेट चुंबकीय क्षेत्र का परिणाम ज्ञात करना 2		
नेट चुंबकीय क्षेत्र की दिशा 1		
213.8 p		
वृत्ताकार कुंडली के अक्ष के किसी बिंदु पर कुंडली पर चुंबकीय क्षेत्र		
$B = \frac{\mu_0 I R^2}{2(a^2 + R^2)^{\frac{3}{2}}}$	1/2	
दोनों वृत्ताकार कुंडलियों के अक्ष के मध्य बिंदु पर नेट चुंबकीय क्षेत्र $B_{\mathrm{l}}+B_{\mathrm{2}}$	1/2	
$= \frac{\mu_0 I R^2}{\left(a^2 + R^2\right)^{3/2}}$ $\left(\therefore a = \sqrt{3}R\right)$	1/2	
नेट चुंबकीय क्षेत्र $\mathrm{B}=rac{\mu_0 I R^2}{\left(3R^2+R^2 ight)^{3/2}}$	1/2	
$B=rac{\mu_0 I}{8R}$ नेट चुंबकीय क्षेत्र की दिशा बाएं तथा दाएं यह दोनों कुंडलियों में धारा की दिशा पर्विभेर करेगी	τ 1	3
28.		
(i) विद्युत् क्षेत्र के विचरण का प्रकार और उसकी पुष्टि ½+½ (ii) धारा घनत्व में विचरण का प्रकार और उसकी पुष्टि ½+½ (iii) इलेक्ट्रॉनों की गतिशीलता में विचरण का प्रकार और उसकी पुष्टि		
(i) $E = \frac{I}{A}\rho$, विद्युत् क्षेत्र में वृद्धि हो जाएगी।	1/2+1/2	
(ii) $j=rac{I}{A}$, धारा घनत्व में वृद्धि हो जाएगी $ $	1/2+1/2	
$\mu_e = \frac{e au}{m}$, गतिशीलता में कोई परिवर्तन नहीं होगा।	1/2+1/2	
 अथवा		
8		1

	बिंदुओं A, B और C पर विद्युत् क्षेत्र ज्ञात करना 1+1+1		
	बिंदु ${f A}$ पर विद्युत् क्षेत्र $(ec{E}_{\scriptscriptstyle A})$		
	$\vec{E}_A = \vec{E}_1 + \vec{E}_2$	1/2	
	$= \frac{\sigma}{2\varepsilon_0}(-\hat{\mathbf{i}}) + \frac{3\sigma}{2\varepsilon_0}(\hat{\mathbf{i}})$	1/2	
	$\vec{E}_A = \frac{\sigma}{\varepsilon_0}(\hat{\mathbf{i}})$		
	बिंदु B पर विद्युत् क्षेत्र $(\vec{E}_{\scriptscriptstyle B})$	1/	
	$\vec{E}_B = \vec{E}_1 + \vec{E}_2$	1/2	
	$=\frac{\sigma}{2\varepsilon_0}\hat{i} + \frac{3\sigma}{2\varepsilon_0}\hat{i}$	1/2	
	$=rac{2\sigma}{arepsilon_0}\hat{i}$		
	बिंदु ${ m C}$ पर विद्युत् क्षेत्र $(ec{E}_{\scriptscriptstyle C})$		
	$\vec{E}_c = \vec{E}_1 + \vec{E}_2$	1,4	
	$=\frac{\sigma}{2\varepsilon_0}\hat{i}+\frac{3\sigma}{2\varepsilon_0}(-\hat{i})$	1/2	
	$=\frac{\sigma}{\varepsilon_0}(-\hat{i})$	1/2	3
	SECTION - D		
29.	(i) (A) B ₁ only	1	
	(ii) (B) A,C	1	
	अथवा		
	(C) उर्मिका के साथ एकदिशिक (iii) (D) होल , इलेक्ट्रॉन	1	
	(iv) (C) 100 Hz	1	4
30.	(i)(B) $qd(\hat{i}+\hat{j})$	1	
	(ii)(C) 2	1	
	(iii)(A) 2.5 x 10 ⁻⁵ Nm	1	
	(iv) (C) $\frac{1}{2}evr$	1	
	- अथवा		
	(B) $5.0 \times 10^{-3} \mathrm{Am^2}$		4
	SECTION - E		

- (i)
 a.c जित्र का नामांकित आरेख
 1

 a.c जित्र की कार्यविधि
 1
 - emf के लिए व्यंजक प्राप्त करना 1
- (ii) बल का परिमाण और दिशा ज्ञात करना ½+1/2

a.c जिनत्र की कार्यविधि

जब किसी कुंडली को किसी एक सामान चुंबकीय क्षेत्र में किसी नियत कोणीय चाल से घूर्णित किया जाता है तो उससे गुजरने वाले चुंबकीय फ्लक्स में परिवर्तन होता है जिसके फलस्वरूप उस कुंडली में कोई emf प्रेरित होती है | किसी क्षण t पर कुंडली से सम्बंध फ्लक्स

$$\varphi_B = BA\cos\omega t$$

$$\varepsilon = -N \frac{d\varphi_B}{dt}$$

 $\varepsilon = NBA\omega\sin\omega t$

(ii) पाश की भुजा MN पर बल

$$F_{1} = \frac{4\pi \times 10^{-7} \times 3 \times 1 \times 10 \times 10^{-2}}{2\pi \times 20 \times 10^{-2}}$$
$$= 3 \times 10^{-7} \text{ N}$$

यह बल तार से दूर की ओर दिशिक है पाश की भूजा SP पर बल

$$F_2 = \frac{4\pi \times 10^{-7} \times 3 \times 1 \times 10 \times 10^{-2}}{2\pi \times 30 \times 10^{-2}}$$
$$= 2 \times 10^{-7} \text{ N}$$

यह बल तार की ओर दिशिक है

पाश पर नेट बल
$$F = F_1 - F_2 = 10^{-7} \text{ N}$$

पाश पर नेट बल तार 'से दूर की ओर दिशिक है।

1

1

1/2

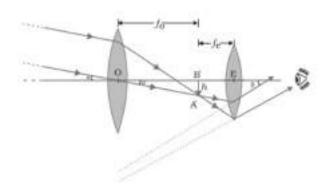
1/2

1/2

1/2

1/2

 $\frac{1}{2}$


	अथवा		
	(i) विद्युत् चुंबकीय प्रेरण के नियम का कथन ½		
	लेंज़ के नियम का उपयोग		
	स्वप्रेरकत्व के लिए व्यंजक प्राप्त करना 2		
	(ii) (1) कोणीय आवृत्ति परिकलित करना 1		
	(2) परिपथ की प्रतिबाधा परिकलित करना 1		
	 किसी परिपथ में प्रेरित emf का परिमाण परिपथ से गुजरने वाले चुंबकीय फ्लक्स में 		
	परिवर्तन की दर के बराबर होता है।	1/2	
	 लेंज़ के नियम का उपयोग - यह प्रेरित emf की ध्रुवता निर्धारित करता है। 	1/2	
	• अनुप्रस्थ काट क्षेत्रफल A , लम्बाई l तथा प्रति एकांक लम्बाई n फेरों वाली किसी		
	लम्बी परिनालिका पर विचार कीजिये यदि इस परिनालिका से धारा I प्रवाहित हो रही		
	है तो परिनालिका के भीतर चुंबकीय क्षेत्र		
	$B = \mu_0 nI$	1/2	
	परिनालिका से सम्बद्ध कुल चुंबकीय फ्लक्स	1/2	
	$N\varphi_{B} = (nl)(\mu_{0}nI)(A)$		
	$N\varphi_{B} = \mu_{0}n^{2}AII$		
	स्वप्रेरकत्व		
	$L = \frac{N\Phi_B}{I}$	1/2	
	$L = \mu_0 n^2 A l$		
	यदि परिनालिका के भीतर आपेक्षिक चुंबकशीलता μ_r का कोई पदार्थ भरा है, तब		
	$L = \mu_r \mu_0 n^2 A l$	1/2	
	(i) (1) अनुनादीय कोणीय आवृत्ति		
	$\alpha = \frac{1}{2}$	1/2	
	$\omega_0^{} = rac{1}{\sqrt{LC}}$	1/2	
	$\omega_0 = \frac{1}{\sqrt{50 \times 10^{-3} \times 80 \times 10^{-6}}} = 500 \ rad s^{-1}$	72	
	५५०×१० ×८०×१० (2) जब आपूर्ति की आवृत्ति परिपथ की मूल आवृत्ति के बराबर है, तब		
	प्रतिबाधा = प्रतिरोध		
	z = R	1/2	
	$z = 20 \Omega$	1/2	5
32.			
32.	(i) अभिदृश्यक तथा अभिनेत्र लेंसों की अभिकल्पना करते समय विचार करने		
	योग्य दो मुख्य बातें 1		
	(ii) दूरबीन की आवर्धन क्षमता के लिए व्यंजक प्राप्त करना 2		
	(1) विचलन कोण का परिकलन 1 प्रिज़्म के पदार्थ के अपवर्तनांक का परिकलन 1		
	। । । । । । । । । । । । । । । । । । ।		
	दो विचारणीय मुख्य बातें		
	<u> </u>		

अभिदृश्यक के लिए

- 1. अधिकतम व्यास (द्वारक)
- 2. अधिकतम फोकस दूरी

नेत्रिका (अभिनेत्र लेंस) के लिए

- 1. लघु व्यास
- 2. लघु फोकस दूरी

दूरदर्शक की आवर्धन क्षमता

किसी दूरदर्शक की आवर्धन क्षमता (m) प्रतिबिम्ब द्वारा नेत्र पर अंतरित कोण β तथा बिम्ब द्वारा नेत्र पर (अथवा लेंस पर) अंतरित कोण α के अनुपात के बराबर होती है अर्थात

$$m \approx \frac{\beta}{\alpha} \approx \frac{h}{f_e} \cdot \frac{f_0}{h} = \frac{f_0}{f_e}$$

(ii) i+e = D+A

at
$$D = D_m$$
 , $i = e$

$$2i = D_m + A$$

$$2\times45=D_m+60^0$$

$$D_m = 30^0$$

$$\mu = \frac{\sin\left(\frac{A+D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

$$\mu = \frac{\sin\left(\frac{60^0 + 30^0}{2}\right)}{\sin\left(\frac{60^0}{2}\right)}$$
$$= \sqrt{2}$$

अथवा

- (i) एकल झिरी के कारण प्राप्त विवर्तन पैटर्न का प्रेक्षण करने के लिए कार्यकलाप का विवरण
- (ii) द्रव का अपवर्तनांक ज्ञात करना
- (i) दो रेज़र ब्लेडों को इस प्रकार पकड़ते हैं कि उनके किनारे समान्तर हों और दोनों के बीच एक संकीर्ण झिरी बने। इसके बाद झिरी को बल्ब के चमकीले तंतु के समान्तर ठीक सामने रख कर झिरी का अवलोकन करते हैं।

2

1

 $\frac{1}{2}$

 $\frac{1}{2}$

1

1

1

3

	अदीस बैंडों का पैटर्न दिखाई देता है।		
	अवारा वज का वटन विचाउँ वर्ता है।		
	(ii)		
	उत्तल लेंस की फोकस दूरी, $f_1 = 30 \text{cm}$	1/2	
	$\frac{1}{30} = (1.5 - 1) \left[\frac{1}{R} - \frac{1}{(-R)} \right]$		
	$R = 30 \mathrm{cm}$	1/2	
	संयोजन की फोकस दूरी, $f=45~\mathrm{cm}$		
	द्रव के समयावताल लेंस की फोकस दूरी	1/	
	$\frac{1}{f_2} = \frac{1}{f} - \frac{1}{f_1}$	1/2	
	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\frac{1}{f_2} = \frac{1}{45} - \frac{1}{30}$	1/2	
	$f_2 = -90 \mathrm{cm}$		
	लेंस मेकर सूत्र का उपयोग करने पर	1,4	
	$\frac{1}{-90} = (\mu_l - 1) \left[\frac{1}{-30} - \frac{1}{\infty} \right]$	1/2	
	_90		
	$\mu_l = \frac{4}{3}$		
	$\mu_l = \frac{3}{3}$	1/2	5
33.			
	(i) द्रव्य तरंगों की परिभाषा 1		
	दे ब्रोग्ली तरंगदैर्घ्य के लिए व्यंजक प्राप्त करना 2		
	(ii) (1) प्रकाश पुंज में फोटॉन की ऊर्जा परिकलित करना 1		
	(2) प्रति सेकंड उत्सर्जित फोटॉनों की संख्या परिकलित 1		
	(i) गतिशील पिंड से सम्बद्ध तरंग को द्रव्य तरंग कहते हैं द्रव्यमान m और आवेश q के कण द्वारा गतिज ऊर्जा के रूप में ऊर्जा की लब्धि	1	
	प्रज्यमान ।।। जार जापरा पू पा पाना द्वारा गाताज जजा पा रूप म जजा पा साध्य		
	$\frac{1}{2}mv^2 = qV$	1/2	
	$mv = \sqrt{2mqV}$	1/2	
	दे ब्रोग्ली संबंध के अनुसार		
	$\lambda = \frac{h}{}$	1/2	
	mv	1/2	
	$\lambda = \frac{h}{\sqrt{2mqV}}$		
		1/	
	(ii) (1) $E = hv$ = $6.63 \times 10^{-34} \times 5 \times 10^{14}$	1/2	
	- 0.03 ^ 10	L	1

$= 3.365 \times 10^{-19} \mathrm{J}$	1/2
$n = \frac{P}{E}$ (2)	1/2
$= \frac{3.315 \times 10^{-3}}{3.315 \times 10^{-19}} = 10^{16} s^{-1}$	1/
3.313×10 अथवा	1/2
(i) बोर के अभिगृहीत ½ x 3	
(ii) हाइड्रोजन परमाणु की nवीं कक्षा में इलेक्ट्रॉन की ऊर्जा के	
लिए ट्यंजक प्राप्त करना	
(iii) बंधन ऊर्जा प्रति न्यूक्लियॉन का परिकलन 1 ½	
(1) बोर के अभिगृहीत	
(i) किसी परमाणु में कोई इलेक्ट्रॉन निश्चित स्थायी कक्षाओं में विकिरण ऊर्जा	
उत्सर्जित किए बिना परिक्रमण कर सकता है।	1/2
(ii) इलेक्ट्रॉन नाभिक के चारों ओर केवल उन कक्षाओं में ही परिक्रमण करता है	
जिनके लिए कोणीय संवेग का मान h/2 का पूर्णांक गुणज होता है। जहाँ h	1/2
प्लांक नियतांक (= $6.6 \times 10^{-34} \mathrm{Js}$)। अतः परिक्रमा करते हुए इलेक्ट्रॉन का	
कोणीय संवेग (L) क्वाटित है।	
(iii) कोई इलेक्ट्रॉन अपने विशेष रूप से उल्लिखित अविकिरणी कक्षा से दूसरी	
निम्न ऊर्जा वाली कक्षा में संक्रमण कर सकता है। जब यह ऐसा करता है	
तो एक फोटॉन उत्सर्जित होता है जिसकी ऊर्जा प्रारंभिक एवं अंतिम	1/2
अवस्थाओं की ऊर्जा के अंतर के बराबर होती है।	
व्युत्पत्ति	
(2) किसी हाइड्रोजन परमाणु की स्थायी अवस्था में इलेक्ट्रॉन की कुल	
<u>কর্</u> जা	
$E = -\frac{e^2}{8\pi\varepsilon_0 r_n}$	1/2
* "	
जहां $r_{n,n}$ $n^{ ext{d}}$ कक्षा की त्रिज्या है $ $	
$r_n = \frac{n^2 h^2 \varepsilon_0}{\pi m e^2}$	1/2
समीकरण (2) का मान समीकरण (1) में रखने पर	
$E_n = -\frac{me^4}{8n^2 \varepsilon_0^2 h^2}$	1
$8n^- \varepsilon_0^- n^-$	
(3) द्रव्यमान क्षति	
$\Delta m = \left\lceil 6m\binom{1}{0}n + 6m\binom{1}{1}H\right\rceil - m\binom{12}{6}C$	1/
$\Delta m = (6 \times 1.008665 + 6 \times 1.007825) - 12.000000$	1/2
$\Delta m = 0.09894 \mathrm{u}$	1/2

$B.E. = \Delta m \times 931.5 \text{MeV}$ $= 92.16 \text{MeV}$		
$E_{bn} = \frac{E_b}{4}$ (E_{bn} बंधन ऊर्जा प्रति न्यूक्लियॉन)		
$=\frac{92.16\text{MeV}}{12}$	1/	
=7.68 MeV	1/2	5

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024 SUBJECT NAME PHYSICS [PAPER CODE 55/S/2]

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is
4	enumerated by the candidate, due marks should be awarded. The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ($\sqrt{\ }$)while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which
7	evaluators are committing. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks <u>0-70</u> (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

12	E
13	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past:-
	Leaving answer or part thereof unassessed in an answer book. Civing an angular for a graph of the control
	Giving more marks for an answer than assigned to it.
	Wrong totaling of marks awarded on an answer.
	Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totaling on the title page.
	Wrong totaling of marks of the two columns on the title page.
	Wrong grand total.
	 Marks in words and figures not tallying/not same.
	Wrong transfer of marks from the answer book to online award list.
	• Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be
	marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,
	it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for
	spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

Code: 55/S/2 DINTS/EXPECTED ANSWERS SECTION A trons but different number of protons articles undergoing head on collision is small that de to n-side ecoil.	Marks 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total Marks 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
section A trons but different number of protons articles undergoing head on collision is small tual de to n-side	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
trons but different number of protons articles undergoing head on collision is small tual de to n-side	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
articles undergoing head on collision is small tual de to n-side	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
articles undergoing head on collision is small tual de to n-side	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
articles undergoing head on collision is small tual de to n-side	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1
articles undergoing head on collision is small tual de to n-side	1 1 1 1 1 1 1	1 1 1 1 1 1 1
articles undergoing head on collision is small tual de to n-side	1 1 1 1 1 1	1 1 1 1 1
de to n-side	1 1 1 1 1 1	1 1 1 1 1
de to n-side	1 1 1 1	1 1 1 1
de to n-side	1 1 1	1 1 1
de to n-side	1 1 1	1
de to n-side	1 1	1
	1	
coil.		1
	1	
and Reason (R) are true and Reason (R) is the Assertion (A).		1
and Reason (R) are false.	1	1
nd Reason (R) are true, but Reason (R) is not the Assertion (A).	1	1
nd Reason (R) are true, but Reason (R) is not on of the Assertion (A).	1	1
SECTION B		
f of cell 1 nal resistance of cell 1		
(1)	1/2	
	1/2	
(2)	1/ ₂ 1/ ₂	
(2) OR		
	į į	
		1/2

	$q_{1} = q_{1}C$ $q_{1} = q_{1}C$ $q_{1} = q_{1}C$ $q_{2} = q_{1}C$ $q_{3} = q_{4}C$ $q_{4} = q_{4}C$ $q_{5} = q_{5}C$ $q_{6} = q_{6}C$ $q_{6} = q_$		
	$\vec{E}_1 = \frac{kq_1}{r_1^2}(-\hat{i}) = \frac{9 \times 10^9 \times 3 \times 10^{-6}}{(0.3)^2}(-\hat{i}) = 3 \times 10^5(-\hat{i}) \text{ NC}^{-1}$	1/2	
	$\vec{E}_{1} = \frac{kq_{1}}{r_{1}^{2}}(-\hat{i}) = \frac{9 \times 10^{9} \times 3 \times 10^{-6}}{(0.3)^{2}}(-\hat{i}) = 3 \times 10^{5}(-\hat{i}) \text{ NC}^{-1}$ $\vec{E}_{2} = \frac{kq_{2}}{r_{2}^{2}}(-\hat{j}) = \frac{9 \times 10^{9} \times 4 \times 10^{-6}}{(0.3)^{2}}(-\hat{j}) = 4 \times 10^{5}(-\hat{j}) \text{ NC}^{-1}$ $\vec{E} = \vec{E}_{1} + \vec{E}_{2}$ $E = \sqrt{E_{1}^{2} + E_{2}^{2}}$	1/2	
	$E = \sqrt{E_1 + E_2}$ $E = 5 \times 10^5 \text{ NC}^{-1}$ $\tan \theta = \frac{4}{3}$	1/2	2
	$\theta = \tan^{-1} \left(\frac{4}{3} \right)$ inclination with respect to the x-axis (in III quadrant).	1/2	
18.	Difference between magnetization and the susceptibility 1 Susceptibility of paramagnetic and diamagnetic materials $\frac{1}{2} + \frac{1}{2}$ Magnetization is equal to the net magnetic moment per unit volume. Alternatively $\vec{M} = \frac{\vec{m}_{net}}{V}$ Susceptibility is a measure of how a magnetic material responds to an external field. Alternatively $\vec{M} = \chi \vec{H}$	1/2	
	Susceptibility of paramagnetic material is between 0 & ε (where ε has small positive value) Alternatively $0 < \chi < 1$	1/2	2
19.	Susceptibility of diamagnetic material is between $-1 \le \chi < 0$ • Stating Huygens Principle 1 • Diagram 1	,~	-
	Huygens Principle: Each point of the wavefront is the source of a secondary disturbance and the wavelets emanating from these points spread out in all directions with the speed of the wave. These wavelets emanating from the wavefront are usually referred to as secondary wavelets and if we draw a common tangent to all these spheres, we obtain the new position of the wavefront at a later time.	1	

Mechanica Andrews Service Serv	1	2
Naming of impurity atom of (a) p- type		
(a) Impurity atom of p- type is trivalent or group 13(acceptor impurit atom)(b) Impurity atom of n- type is pentavalent or group 15(donor impurit atom)	1/2	
E_{c} E_{c	1/2 + 1/2	
(a) T > 0K one thermally generated electron-hole pair + 9 electrons from donor atoms (b) T > 0K		2
(a) Calculation of critical angle 1 (b) Calculation of radius of circular light patch 1		
(a) $\sin i_c = \frac{1}{\mu}$ $\sin i_c = \frac{4}{5}$	1/2	
$i_c = \sin^{-1}(\frac{4}{5})$ $or i_c = 53^\circ$	1/2	
(b) $\sin i_c = \frac{r}{\sqrt{r^2 + h^2}}$ $\frac{r^2}{r^2 + h^2} = \left(\frac{4}{5}\right)^2$ $25r^2 = 16r^2 + 16h^2$ h=10cm	1/2	
$9r^2 = 1600$ $r = \frac{40}{3}cm$	1/2	2

	SECTION C		
22	Shape of trajectory with reasons when the angle between $\vec{V} \& \vec{B}$ is (a) 0^0 $\frac{1}{2} + \frac{1}{2}$ (b) 90^0 $\frac{1}{2} + \frac{1}{2}$ (c) 120^0 $\frac{1}{2} + \frac{1}{2}$		
	(a) We know $\vec{F} = q(\vec{v} \times \vec{B})$ $\vec{v} \longrightarrow \vec{B}$ Alternatively:- The particle moves in a straight line. As the angle between $\vec{v} \& \vec{B}$ is 0^0 hence $\vec{F} = 0$ (b)	1/2 1/2	
	Alternatively- The particle moves in a circular path. F is perpendicular to both $\vec{v} \& \vec{B}$ (c)	1/2 1/2	
	Alternatively The particle follows a helical path.	1/2	
	$F = q v B Sin\theta$ Component of velocity parallel to magnetic field tends to move the particle along linear path while the component perpendicular to magnetic field tends to move the particle in circular path. As a consequence the particle moves in a helical path.	1/2	3
23	(a) Identifying the medium Justification (b) (i)Finding the intensity for path difference = $\frac{\lambda}{2}$ 1 (ii) Finding the intensity for path difference = $\frac{\lambda}{3}$ 1 (a) Light travels faster in medium 'B' $\mu_1 = \frac{\sin i}{\sin r_1}$	1/2	

	,	_	_
	$\mu_2 = \frac{\sin i}{\sin r_2}$		
	$\therefore \frac{\mu_1}{\mu_2} = \frac{\sin r_2}{\sin r_1} = \frac{\sin 35^0}{\sin 30^0}$		
	$\Rightarrow \frac{\mu_1}{\mu_2} = \frac{\mathbf{v}_2}{\mathbf{v}_1} > 1$		
	\therefore $\mathbf{v}_2 > \mathbf{v}_1$	1/2	
	(b)		
	$I = 4I_0 \cos^2 \frac{\phi}{2}$ (i) $\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{2} = \pi$	1/2	
	(i) $\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{2} = \pi$	1/2	
	(ii) $I = 4I_0 \left(\cos\frac{\pi}{2}\right)^2 = 0$ $\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{3} = \frac{2\pi}{3}$	1/2	
	$I = 4I_0 \left(\cos\frac{\pi}{3}\right)^2$ $I = I_0$	1/2	3
24	(a) Showing the variation of photocurrent with collector plate potential 1 Explanation 1 (b) Showing the variation of photocurrent with intensity of incident radiation 1		
	(a)		
	10 to		
	Stopping potential	1	
	Yes, these curves meet at stopping potential	1/2	
	For any surface, as the energy of photons does not depend upon intensity of light, at the stopping potential current reduces to zero. (b)	1/2	
	Photoelectus: eurrest	1	
	Intensity of light —		3

25	Calculating electrostatic potential energy of the system 3		
	Electrostatic potential energy of the system :		
	$U = \frac{kq_1q_2}{r_{12}} + q_1V_1 + q_2V_2$	1	
	$\frac{kq_1q_2}{r_{12}} = \frac{9 \times 10^9 \times 10 \times 10^{-6} \times 20 \times 10^{-6}}{9 \times 10^{-2}} = 20$ J	1/2	
	$q_1 V_1 = q_1 \frac{A}{r_1} = \frac{10 \times 10^{-6} \times 2 \times 10^6}{4 \times 10^{-2}} = 500$ J	1/2	
	$q_2V_2 = q_2 \frac{A}{r_2} = \frac{20 \times 10^{-6} \times 2 \times 10^6}{5 \times 10^{-2}} = 800J$	1/2	
	U = (20 + 500 + 800) J $U = 1320 J$	1/2	3
26		1	
	Calculating the self- inductance of the inductor 3		
	Resistance (R) = $\frac{V}{I} = \frac{200}{1} = 200\Omega$	1/2	
	Impedance(Z) = $\frac{V}{I} = \frac{200}{0.5} = 400\Omega$	1/2	
	$z = \sqrt{R^2 + X_L^2}$ $(400)^2 = (200)^2 + \omega^2 L^2$ On solving	1/2 1/2	
	$L = \frac{2\sqrt{3}}{\pi} H$ Or $L = \frac{2}{\sqrt{3}} H$	1	
	Or $L = \frac{2}{\sqrt{3}} H$		3
27	Finding the magnitude of net magnetic field 2 Direction of net magnetic field 1		
	T P T		

	Magnetic field due to a circular coil having N number of turns at point on the axis of the coil		
	$B = \frac{N\mu_0 IR^2}{2(a^2 + R^2)^{\frac{3}{2}}}$	1/2	
	Net field at mid point = $B_1 + B_2$	1/2	
	$=\frac{N\mu_0 IR^2}{(a^2+R^2)^{\frac{3}{2}}}$		
	$(a^2 + R^2)^{\frac{3}{2}}$ $\left(As \ a = \sqrt{3}R\right)$	1/4	
	Net magnetic field B = $\frac{N\mu_0 IR^2}{(3R^2 + R^2)^{\frac{3}{2}}}$	1/2	
	$B = \frac{N\mu_0 I}{8R}$	1/2	
	Direction of the net field will be towards left or right along the axis depending on direction of current in the two loops.	1	3
28.(a)	(i) Variation of electric field and justification 1/2 + 1/2 (ii) Variation of current density and justification 1/2 + 1/2 (iii) Variation of mobility of electrons and justification 1/2 + 1/2		
	With the decrease in area of cross-section.		
	(i) $E = \frac{I}{A}\rho$, electric field increases	1/2+1/2	
	(ii) $j = \frac{I}{A}$, current density increases	1/2+1/2	
	(iii) $\mu_e = \frac{e\tau}{m}$, mobility remains same	1/2+1/2	
	or Or		
(b)	Finding the net electric field (\vec{E}) at points A,B & C 1+1+1		
	Electric field at A(\vec{E}_A) $\vec{E}_A = \vec{E}_1 + \vec{E}_2$		
	$= \frac{\sigma}{2\varepsilon_0}(-\hat{\mathbf{i}}) + \frac{3\sigma}{2\varepsilon_0}(\hat{\mathbf{i}})$	1/2	
	$\vec{E}_A = \frac{\sigma}{\varepsilon_0}(\hat{\mathbf{i}})$	1/2	
	Electric field at B (\vec{E}_B)		
	$ec{E}_{B} = ec{E}_{1} + ec{E}_{2} \ = rac{\sigma}{2arepsilon_{0}} \hat{i} + rac{3\sigma}{2arepsilon_{0}} \hat{i}$	1/2	
		17	
	$=rac{2\sigma}{arepsilon_0}\hat{i}$	1/2	
	Electric field at C (\vec{E}_C)		

			
	$ec{E}_c = ec{E}_1 + ec{E}_2$ $= \frac{\sigma}{2\varepsilon_0} \hat{i} + \frac{3\sigma}{2\varepsilon_0} (-\hat{i})$	1/2	
	$=rac{\sigma}{arepsilon_0}(-\hat{i})$		
		1/2	3
29.	SECTION - D	1	
	(i) (A) B ₁ only	1	
(a)	(ii) (B) A, C OR	1	
(b)	(C) unidirectional with ripple	1	
	(iii) (D) holes, electrons	1	
	(iv) (C) 100 Hz	1	4
30.	(i) (B) $qd(\hat{i}+\hat{j})$	1	
	(ii) (C) 2	1	
	(iii) (A) 2.5 x 10 ⁻⁵ Nm	1	
(a)	(iv) (C) $\frac{1}{2}evr$	1	
(b)	OR (B) $5.0 \times 10^{-3} \text{Am}^2$		4
	SECTION - E		+
31. (a)			
	(i) Labelled diagram of ac generator 1 Working of ac generator 1 Obtaining expression for e.m.f 1 (ii) Finding magnitude of force and direction 2		
	Shp DECOR Axie Shp Alternating emf Carbon brushes	1	
	Working of ac generator When coil is rotated in a uniform magnetic field with a constant angular speed ω , magnetic flux through it changes. As a result, an e.m.f is induced in the coil. Flux linked with the coil at any instant 't' is	1	
	$\varphi_B = BA\cos\omega t$	1/2	

	$\varepsilon = -N \frac{d\varphi_{\scriptscriptstyle B}}{dt}$		
		1/2	
	$\varepsilon = NBA\omega\sin\omega t$	/2	
	<i>u.</i> 1.1.1		
	(ii) $F = \frac{\mu_0 I_1 I_2 l}{2\pi r}$		
	force on arm MN of the loop		
	$4\pi \times 10^{-7} \times 3 \times 1 \times 10 \times 10^{-2}$		
	$F_{1} = \frac{4\pi \times 10^{-7} \times 3 \times 1 \times 10 \times 10^{-2}}{2\pi \times 20 \times 10^{-2}}$		
	$F_1 = 3 \times 10^{-7} \text{ N}$	1/2	
	Force is directed away from the wire		
	Force on arm SP of the loop		
	$F_2 = \frac{4\pi \times 10^{-7} \times 3 \times 1 \times 10 \times 10^{-2}}{2\pi \times 30 \times 10^{-2}}$		
	$2\pi \times 30 \times 10^{-2}$	1,	
	$F_2 = 2 \times 10^{-7} \text{ N}$	1/2	
	Force is directed towards the wire		
	Net force on the loop $F = F_1 - F_2 = 10^{-7} \text{ N}$	1/2	
	Net force on the loop is away from the wire.	1/2	
	Net force on the loop is away from the wife.		
	OR		
	(i) Statement of Faraday's law of electromagnetic induction ½		
	Utility of Lenz's law ½		
(b)	Obtaining expression for self inductance 2		
	(ii) (1) calculating angular frequency 1 (2) calculating impedance of the circuit 1		
	(2) calculating impedance of the circuit		
	(i) The magnitude of induced e.m.f in a circuit is equal to the time rate of		
	change of magnetic flux through the circuit	1/2	
	Utility of Lenz's law	1/2	
	It give polarity of the induced e.m.f . Expression for self inductance	, 2	
	Consider a long solenoid of cross-sectional area A and length l,		
	having n turns per unit length. If I is the current flowing in the		
	solenoid, magnetic field inside the solenoids is	1/2	
	$B = \mu_0 nI$	/2	
	Total magnetic flux linked with the solenoid is		
	$N\varphi_{B} = (nl)(\mu_{0}nI)(A)$	17	
	$N\varphi_{B} = \mu_{0}n^{2}AlI$	1/2	
	Self inductance		
	$L = \frac{N\varphi_B}{I}$		
	$L = \mu_0 n^2 A l$	1/2	
	• •		
	If solenoid is filled with a material of relative permeability μ_r , then		
	$L = \mu_r \mu_0 n^2 A l$	1/2	
	(ii) (1) Resonant angular frequency is		
	$\omega_0 = \frac{1}{\sqrt{LG}}$	1/2	
	√LC 1	72	
	$\omega_0 = \frac{1}{\sqrt{LC}}$ $\omega_0 = \frac{1}{\sqrt{50 \times 10^{-3} \times 80 \times 10^{-6}}} = 500 \text{ rad s}^{-1}$	1/2	
	√20×10 °×80×10 °		
	q		

(2) When frequency of supply is equal to natural frequency		
circuit	ency of the ½	
Z = R	1/	_
$Z = 20 \Omega$	1/2	5
(i) Two main considerations for designing objective and Obtaining expression for magnifying power of telesc (ii) Calculating (1) Angle of deviation (2) Refractive index	• •	
Two main considerations Objective should have 1. Larger diameter 2. Larger focal length Eye piece should have 1. Smaller diameter	1/2	
2. Smaller focal length	1/2	
Chaptive de Bregner	1	
Magnifying power of telescope Magnifying power is the ratio of the angle β subtended at final images to the angle α which the object subtends at the $m \approx \frac{\beta}{\alpha} \approx \frac{h}{f_e} \cdot \frac{f_0}{h} = \frac{f_0}{f_e}$ (ii) $i+e = D+A$		
$at D = D_m , i = e$ $2i = D_m + A$ $2 \times 45 = D_m + 60^0$ $D_m = 30^0$ $\sin\left(\frac{A + D_m}{2}\right)$	1	
$\mu = \frac{\sin\left(\frac{A+D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$ $\mu = \frac{\sin\left(\frac{60^0 + 30^0}{2}\right)}{\sin\left(\frac{60^0}{2}\right)}$		
$=\sqrt{2}$ OR	1	
UK UK		
(b) (c) P (1) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		

ai fi A	We hold two razor blades in such a way that their edges are parallel and with a narrow slit in between. Keep the slit parallel to the lament of electric bulb, right in front of the eye. diffraction is seen with its bright and dark bands.	2	
(ii)	$\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$	1/2	
Fo	cal length of convex lens, $f_1 = 30 \text{ cm}$ $\frac{1}{30} = (1.5 - 1) \left[\frac{1}{R} - \frac{1}{(-R)} \right]$		
	$R = 30 \mathrm{cm}$	1/2	
foca	al length of combination, f = 45 cm al length of plane concave lens of liquid. 1 _ 1 1		
	$\frac{1}{f_2} = \frac{1}{f} - \frac{1}{f_1}$ $\frac{1}{f_2} = \frac{1}{45} - \frac{1}{30}$	1/2	
	$f_2 = 45 - 30$ $f_2 = -90 \text{ cm}$	1/2	
	ng lens maker's formula		
-	$\frac{1}{-90} = \left(\mu_l - 1\right) \left[\frac{1}{-30} - \frac{1}{\infty} \right]$	1/2	
	$\mu_l = \frac{4}{3}$	1/2	5
33. (a)			
(i) (ii)	Defining matter waves Obtaining expression for de- Broglie wavelength (1) Calculating energy of photon (2) Calculating number of photons per second		
	e associated with a mass in motion is called matter wave. of mass m and charge q gains energy in the form of kinetic	1	
chergy.	$\frac{1}{2}mv^2 = qV$	1/2	
	$(mv)^{2} = 2qVm$ $mv = \sqrt{2mqV}$	1/2	
Accordin	ngly to de-Broglie relation		
	$\lambda = \frac{h}{mv}$	1/2	
	$\lambda = \frac{h}{\sqrt{2mqV}}$	1/2	
(i) (1	E = hv	1/2	
	$= 6.63 \times 10^{-34} \times 5 \times 10^{14}$ = 3.315 \times 10^{-19} J	1/2	
(2	$n = \frac{P}{E}$	1/2	

1				
		$= \frac{3.315 \times 10^{-3}}{3.315 \times 10^{-19}} = 10^{16} \mathrm{s}^{-1}$	1/2	
		OR		
	(b)			
		(i) Bohr's postulates ½ x 3		
		Deriving expression for energy of electron in n th orbit of		
		hydrogen atom 2		
		(ii) Calculating Binding Energy per nucleon 1 ½		
		(i)		
		Bohr's Postulates		
		(a) Bohr's first postulate was that an electron in an atom could revolve	1/-	
		in certain stable orbits without the emission of radiant energy,	1/2	
		(b) Bohr's second postulate defines these stable orbits. This postulate	1/2	
		states that the electron revolves around the nucleus only in those orbits for which the angular momentum is some integral multiple of		
		$h/2 \pi$ where h is the Planck's constant.		
		(c) Bohr's third postulate states that an electron might make a transition	1/	
		from one of its specified non-radiating orbits to another of lower	1/2	
		energy. When it does so, a photon is emitted having energy equal to the		
		energy difference between the initial and final states.		
		Derivation		
		Total energy of electron in the stationary state of hydrogen		
		atoms is		
		e^2	1/2	
		$E = -\frac{e^2}{8\pi\varepsilon_0 r_n}$, 2	
		Where r _n is radius of n th orbit		
		$r_n = \frac{n^2 h^2 \varepsilon_0}{\pi m e^2}$		
		$r_n = \frac{1}{\pi me^2}$	1/2	
		Substituting eq (2) in eq (1)		
		$E_{n} = -\frac{me^{4}}{8n^{2}\varepsilon_{0}^{2}h^{2}}$	1	
		$n = 8n^2 \varepsilon_0^2 h^2$		
		(ii)	1/	
		Mass defect, $\Delta m = \left[6m \binom{1}{0}n + 6m \binom{1}{1}H \right] - m \binom{12}{6}C$	1/2	
		$\Delta m = (6 \times 1.008665 + 6 \times 1.007825) - 12.000000$		
		$\Delta m = 0.09894 \mathrm{u}$	1/2	
		$B.E. = \Delta m \times 931.5 \mathrm{MeV}$		
		= 92.16MeV		
		Binding energy per nucleon, $E_{bn} = \frac{E_b}{A}$		
		1.		
		$=\frac{92.16}{12}$		
		12 =7.68MeV		
		-/.UOIVIC V	1/2	5
ш		i		i