Chapter 2: Is Matter Around Us Pure?

♦ 1. Types of Matter

- **Pure Substance**: Has a uniform and definite composition.
 - Examples: Distilled water, pure gold.
- Impure Substance (Mixture): Contains two or more substances mixed physically.
 - Examples: Salt water, air.

♦ 2. Types of Mixtures

► Homogeneous Mixture:

- Uniform composition throughout.
- Particles not visible.
- Example: Salt in water, air.

► Heterogeneous Mixture:

- Non-uniform composition.
- Particles are visible.
- Example: Sand in water, oil and water.

◆ 3. Separation of Mixtures

Methods based on properties of components:

- Filtration: Solid from liquid (e.g. sand + water).
- Evaporation: Solute from solution (e.g. salt from saltwater).
- Distillation: Based on boiling points.
- Sublimation: For solids that sublime (e.g. ammonium chloride).
- Chromatography: Separate colors/pigments.
- Centrifugation: Separate fine solid from liquid (e.g. milk cream).

◆ 4. Types of Pure Substances

► Elements:

- Made of same type of atoms.
- Cannot be broken down.
- Examples: Hydrogen, Oxygen, Gold.

► Compounds:

- Formed by chemical combination of elements.
- Can be broken into simpler substances.
- Examples: Water (H₂O), Carbon dioxide (CO₂).

♦ 5. Solutions

- Solute + Solvent = Solution
- Homogeneous.
- E.g., Sugar in water.

Important Terms:

- Solute: Substance dissolved.
- Solvent: Substance in which solute is dissolved.
- Concentration: Amount of solute in given volume.

♦ 6. Types of Solutions

Туре	Example
Solid in Liquid	Sugar in water
Gas in Liquid	Oxygen in water
Liquid in Liquid	Alcohol in water

◆ 7. Suspensions and Colloids

► Suspension:

- Heterogeneous.
- Particles visible, settle down.
- Example: Muddy water.

► Colloid:

- Heterogeneous but looks homogeneous.
- Particles do not settle.
- Tyndall effect observed.
- Example: Milk, fog.

♦ 8. Tyndall Effect

- Scattering of light by particles in colloids.
- Helps distinguish colloids from solutions.

♦ 9. Physical vs Chemical Change

Physical Change	Chemical Change
No new substance formed	New substance formed
Usually reversible	Irreversible
Example: Melting ice	Example: Burning paper