Chapter 4: Structure of the Atom – Notes

1. Introduction

- Atom: Fundamental building block of all matter.
- Earlier models: Dalton's atomic theory \rightarrow atom was indivisible.

2. Discovery of Subatomic Particles

- Electrons: Discovered by J.J. Thomson (using cathode ray experiment).
- Protons: Discovered by E. Goldstein (using canal ray experiment).
- Neutrons: Discovered by James Chadwick.

3. Atomic Models

(i) Thomson's Model ("Plum Pudding Model")

- Atom is a positively charged sphere with electrons embedded in it.
- Like "raisins in a pudding."
- **Failed** to explain atom's stability.

(ii) Rutherford's Model (Gold Foil Experiment)

- Alpha particles were bombarded on thin gold foil.
- Observations:
 - Most alpha particles passed through.
 - \circ Some deflected at angles.
 - Very few bounced back.
- Conclusions:
 - Atom is mostly empty.
 - Positive charge and mass are concentrated at center (nucleus).
- Drawback: Couldn't explain stability of atom (electrons should spiral into nucleus).

(iii) Bohr's Model

- Electrons revolve around nucleus in **fixed orbits (energy levels)**.
- Energy is quantized: Electrons don't lose energy in fixed orbits.
- Energy levels named as K, L, M, N, etc.

4. Atomic Number, Mass Number

- Atomic Number (Z) = No. of protons = No. of electrons (for neutral atom).
- Mass Number (A) = No. of protons + No. of neutrons.

- Example:
 - Sodium (Na): Z = 11, A = 23
 - Protons = 11
 - Electrons = 11
 - Neutrons = 23 11 = 12

5. Isotopes and Isobars

- Isotopes: Same atomic number, different mass numbers.
- Example: Hydrogen → Protium (1 H), Deuterium (2 H), Tritium (3 H).
- **Isobars**: Different atomic numbers, same mass numbers.
 - \circ Example: ⁴⁰Ar and ⁴⁰Ca.