Chapter- 11 Electricity

1. Electric Current

- **Definition:** Flow of electric charge through a conductor.
- **Formula:** I=Q t Where I = current (ampere), Q = charge (coulomb), t = time (seconds)
- **Unit:** Ampere (A) 1 A = 1 C/s

■ 2. Electric Potential and Potential Difference

- **Electric Potential:** Work done to bring a unit positive charge from infinity to a point.
- **Potential Difference (V):** Work done to move a unit charge between two points. V=WO
- **Unit:** Volt (V) 1 V = 1 J/C

4 3. Ohm's Law

- **Statement:** Current through a conductor is directly proportional to the potential difference across it, provided temperature remains constant.
- Formula: V=IR Where V = voltage, I = current, R = resistance
- **Graph:** A straight line passing through the origin (V-I graph)

☐ 4. Resistance

- **Definition:** Opposition offered by a conductor to the flow of current.
- Unit: Ohm (Ω)
- Factors Affecting Resistance:
 - Length $(R \propto L)$
 - Area of cross-section ($R \propto 1/A$)
 - o Material of conductor
 - o Temperature

☐ 5. Resistivity

- **Definition:** Resistance of a material per unit length and unit area.
- **Formula:** R=ρ L A
- Unit: Ohm meter $(\Omega \cdot m)$

6. Combination of Resistors

- Series:
 - o R total=R1+R2+R3+...
 - o Same current flows through all
- Parallel:
 - o 1/R total=1/R1+1/R2+... Voltage remains the same across all

♦ 7. Heating Effect of Electric Current

- **Joule's Law:** $H=I_2Rt$ Where H= heat (Joules), I= current, R= resistance, t= time
- Applications: Electric heaters, toasters, fuses

9 8. Electric Power and Energy

- **Power (P):** Rate of doing electrical work $P=VI=I_2R=V_2R$
- **Unit:** Watt (W), 1 kW = 1000 W
- **Energy:** E=P×t Unit: kilowatt-hour (kWh)

\square 9. Devices and Symbols

- Ammeter: Measures current (connected in series)
- Voltmeter: Measures potential difference (connected in parallel)
- Resistor, Cell, Battery, Switch: Represented with standard circuit symbols

Electricity

1. Electric Current

Defines current as flow of electric charge through a conductor.

$$F:=I=\frac{Q}{t}$$

$$I = Current (A)$$

$$Q = \text{Charge}$$
 (Colomb (C)

$$t = time$$
 (s)

2. Electric Potential and Potential Difference

Electric Potential: the work done to bring a unit positive charge from infinity to a point.

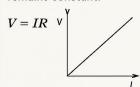
Poretnial =
$$\frac{W}{Q}$$

$$V = Volt$$
 (V

$$W = Work$$
 (J)

$$W = WORK$$
 (3)
 $Q = Charge$ (Colomb (C)

5. Resistivity


Resistívity: as resistance of a material per unit length and unit area.

$$R = \rho' l = \frac{L}{A}$$

Unit $\Omega = ohm$ meter

3. Ohm's Law

Current through a conductor is directly proportional to the potential difference across it, provided temperature remains constant.

4. Resistance

Resistance: The opposition obternod by a conducrtor to flow of current.

Unit ohm (Ω)

$$R = \rho I/L$$

where p' = resistiv in ohm meter)

L = Length of conductor

A = Area of cross-section

6. Combination of Resistors

$$R_{total} = R_1 + R_2 + \cdots$$

Parallel
$$\frac{1}{R_{1-1-1}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$

-VVVVV--